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Abstract. A quasiplane f(V ) is the image of an n-dimensional Euclidean subspace V of RN

(1 ≤ n ≤ N − 1) under a quasiconformal map f : RN → RN . We give sufficient conditions
in terms of the weak quasisymmetry constant of the underlying map for a quasiplane to be a bi-
Lipschitz n-manifold and for a quasiplane to have big pieces of bi-Lipschitz images of Rn. One
main novelty of these results is that we analyze quasiplanes in arbitrary codimension N − n.
To establish the big pieces criterion, we prove new extension theorems for “almost affine” maps,
which are of independent interest. This work is related to investigations by Tukia and Väisälä on
extensions of quasisymmetric maps with small distortion.
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1. Introduction

The quasiconformal maps of Euclidean space (whose precise definition is deferred until §2)
are a class of homeomorphisms f : RN → RN (N ≥ 2) with several nice properties:

Date: March 12, 2014.
2010 Mathematics Subject Classification. Primary 30C65. Secondary 28A75, 54C20.
Key words and phrases. quasiconformal maps, quasisymmetric maps, almost affine maps, extension theorems,

quasiplanes, rectifiable sets, big pieces of bi-Lipschitz images, Reifenberg flat sets, Jones beta numbers.
The authors were partially supported: J. Azzam by NSF DMS RTG 08-38212, M. Badger by an NSF postdoctoral

fellowship DMS 12-03497, and T. Toro by NSF DMS 08-56687 and a grant from the Simons Foundation #228118.
A portion of this research was completed while the authors visited the Institute for Pure and Applied Mathematics
for the long program on Interactions Between Analysis and Geometry in the spring of 2013.

1



2 JONAS AZZAM, MATTHEW BADGER, AND TATIANA TORO

• f maps balls onto regions with uniformly bounded eccentricity (f is quasisymmetric);
• f is differentiable at Lebesgue almost every x ∈ RN ; and
• f maps sets of Lebesgue measure zero onto sets of Lebesgue measure zero.

Nevertheless, quasiconformal maps may distort geometric characteristics of lower dimensional
sets in RN such as Hausdorff dimension, Hausdorff measure, and rectifiability. For example,
there exist quasiconformal maps of the plane that map the unit circle onto the Koch snowflake.
It is natural to ask, therefore, under which circumstances—and to what extent—can one control
the distortion of geometry by quasiconformal maps. This question has been studied from a
number of viewpoints by several authors, see e.g. [Ast94], [Hei96], [Sem96], [Bis99], [DT99],
[Roh01], [MMPV02], [MMV07], [Pra07], [KO09], [LSUT10], [Mey10], [Smi10], [PTUT12],
[ACT+13], [BMT13], [BGRT14], [VW14], [Azz], [BH], and the references therein.

In this paper, we find conditions that ensure that a quasiplane is rectifiable, or that at least,
ensure that a quasiplane contains nontrivial rectifiable subsets. A quasiplane is the image f(V )

of an n-dimensional Euclidean subspace V ⊂ RN (1 ≤ n ≤ N−1) under a quasiconformal map
f : RN → RN . When n = 1, a quasiplane f(V ) is also called a quasiline. When n = N − 1, a
quasiplane f(V ) is the unbounded variant of a quasisphere g(SN−1), which is the image of the
unit sphere SN−1 under a quasiconformal map g : RN → RN . A setX ⊂ RN is n-rectifiable (in
the sense of geometric measure theory, e.g. see [Mat95]) if there exist countably many Lipschitz
maps fi : [0, 1]n → RN whose images cover H n-almost all of X , that is,

H n
(
X \

∪
i
fi([0, 1]

n)
)
= 0,

where H n denotes n-dimensional Hausdorff measure on RN . This notion of rectifiability can
be strengthened or weakened in a variety of ways, a few of which will enter the discussion below.
In particular, a setX ⊂ RN is locallyL-bi-Lipschitz equivalent to subsets of Rn if for all x0 ∈ X

there exist r > 0, a map h : X ∩BN(x0, r) → Rn, and a constant c > 0 such that

c|x− y| ≤ |h(x)− h(y)| ≤ Lc|x− y| for all x, y ∈ X ∩BN(x0, r). (1.1)

We also say thatX is locally bi-Lipschitz equivalent to subsets of Rn if the bi-Lipschitz constant
L in (1.1) is allowed to depend on x0.

In [BGRT14], the second and third named authors, jointly with James T. Gill and Steffen
Rohde, gave sufficient conditions for a quasisphere f(SN−1) to be locally bi-Lipschitz equivalent
to subsets ofRN−1. The conditions were given in terms of the maximal dilatation of f [BGRT14,
Theorem 1.1] and in terms of the weak quasisymmetry constant of f [BGRT14, Theorem 1.2].
The latter condition can be reformulated for quasiplanes, as follows. For all X ⊂ RN and maps
f : X → RN , the weak quasisymmetry constant Hf (X) ∈ [1,∞] of f in X is the least constant
such that for all x, y, a ∈ X ,

|x− a| ≤ |y − a| =⇒ |f(x)− f(a)| ≤ Hf (X)|f(y)− f(a)|.

In order to simplify several expressions below, we assign

H̃f (X) := Hf (X)− 1.
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For all 1 ≤ n ≤ N , we identify the Euclidean space Rn with the subspace Rn ×{0}N−n of RN .
We letBn(x, r) andBn

◦ (x, r) denote, respectively, the closed and open ball inRn with center x ∈
Rn and radius r > 0. In addition, we let L n denote Lebesgue measure on Rn and we normalize
n-dimensional Hausdorff measure H n on RN so that H n(Bn(0, 1)) = L n(Bn(0, 1)).

Theorem 1.1. ([BGRT14]) Suppose 1 ≤ n = N − 1. If f : RN → RN is quasiconformal and∫ 1

0

sup
x∈Bn(x0,1)

H̃f (B
N(x, r))2

dr

r
<∞ for all x0 ∈ Rn, (1.2)

then the quasiplane f(Rn) is locally (1+δ)-bi-Lipschitz equivalent to subsets ofRn for all δ > 0.
Thus, f(Rn) is n-rectifiable and H n f(Rn) (the restriction of H n to f(Rn)) is locally finite.

The conclusion in Theorem 1.1 that f(Rn) is locally (1+δ)-bi-Lipschitz equivalent to subsets
of Rn for all δ > 0 is strictly weaker than f(Rn) being locally C1. However, if 1 ≤ n ≤ N − 1

and the square Dini condition (1.2) is replaced with a linear Dini condition, then the quasiplane
f(Rn) is a C1 embedded submanifold of RN ; see [Res94, Chapter 7, §4].

The first main result of this paper is to extend Theorem 1.1 to arbitrary codimension.

Theorem 1.2. Suppose 1 ≤ n ≤ N − 1. If f : RN → RN is quasiconformal and (1.2) holds,
then the quasiplane f(Rn) is locally (1+δ)-bi-Lipschitz equivalent to subsets ofRn for all δ > 0.
Thus, f(Rn) is n-rectifiable and H n f(Rn) is locally finite.

Secondly, we show how to relax the hypothesis of Theorem 1.2 and obtain the conclusion that
a quasiplane is locally bi-Lipschitz equivalent to subsets of Rn.

Theorem 1.3. Suppose 1 ≤ n ≤ N − 1. If f : RN → RN is quasiconformal and

sup
z∈Bn(x0,1)

∫ 1

0

H̃f (B
N(x, r))2

dr

r
<∞ for all x0 ∈ Rn, (1.3)

then the quasiplane f(Rn) is locally bi-Lipschitz equivalent to subsets of Rn near f(x0) for each
x0 ∈ Rn with local bi-Lipschitz constant depending only on n, N , and the quantity in (1.3).
Thus, f(Rn) is n-rectifiable and H n f(Rn) is locally finite.

The exponent 2 appearing in Theorems 1.2 and 1.3 is the best possible; that is, 2 cannot be
replaced with 2 + ε for any ε > 0. For example, the construction in David and Toro [DT99]
(with the parameters Z = Rn and εj = 1/j) can be used to produce a quasiconformal map
f : RN → RN (N = n+ 1) such that∫ 1

0

sup
x∈Bn(x0,1)

H̃f (B
N(x, r))2+εdr

r
<∞ for all x0 ∈ Rn and ε > 0,

but for which the associated quasiplane f(Rn) is not n-rectifiable and has locally infinite H n

measure; in fact, f(Rn) does not contain any curves with positive and finite H 1 measure.
The third main result of the paper is that one can replace the locally uniform condition (1.3)

with a Carleson measure condition and still detect some rectifiable structure in the image f(Rn).
To make this precise, we introduce some additional terminology. A set X ⊂ RN contains big
pieces of bi-Lipschitz images of Rn if there exist constants L ≥ 1 and α > 0 such that for all
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x ∈ X and 0 < r < diamX there exist Sx,r ⊂ X ∩ BN(x, r) and hx,r : Sx,r → Rn such that
H n(Sx,r) ≥ αrn and hx,r is L-bi-Lipschitz. The constants L and α are collectively called BPBI
constants of X; to differentiate between them, we call L a BPBI bi-Lipschitz constant of X and
we call α a BPBI big pieces constant of X .

Theorem 1.4. Suppose 2 ≤ n ≤ N − 1. If f : RN → RN is quasiconformal and there exists
Cf > 0 such that for all x0 ∈ Rn and r0 > 0,∫

Bn(x0,r0)

∫ r0

0

H̃f (B
N(x, r))2

dr

r
dL n(x) ≤ Cf L n(Bn(x0, r0)), (1.4)

then the quasiplane f(Rn) contains big pieces of bi-Lipschitz images of Rn with BPBI constants
depending on at most n, N , Hf (Rn), and Cf . Furthermore, the BPBI bi-Lipschitz constant
L = L(n,N,Cf ) → 1 as Cf → 0 with n and N held fixed.

In the theory of uniform rectifiability [DS91, DS93], it is usually assumed that a set X ⊂ RN

with big pieces of bi-Lipschitz images of Rn is closed and Ahlfors n-regular, in the sense that
c1r

n ≤ H n(X ∩ BN(x, r)) ≤ c2r
n for all x ∈ X and 0 < r < diamX . However, we wish to

emphasize that in this paper we do not impose these regularity assumptions in the definition of
big pieces of bi-Lipschitz images of Rn. As a consequence, the quasiplanes in Theorem 1.4 are
not necessarily n-rectifiable, but at least contain uniformly large rectifiable sets at each location
and scale in the image. The restriction to n ≥ 2 in Theorem 1.4 enters our proof of the theorem
when we invoke Gehring’s theorem on distortion of Lebesgue measure by quasiconformal maps
in Rn (see Corollary 2.12). We do not currently know whether or not Theorem 1.4 holds for
quasilines. In this context, let us mention that in recent work the first author gave necessary and
sufficient conditions in terms of linear approximation properties of f for the image f(Rn) of a
quasisymmetric map f : Rn → RN to have big pieces of bi-Lipschitz images of Rn when n ≥ 2,
but demonstrated that analogous characterizations fail when n = 1; see [Azz] for details.

At the core of each of Theorems 1.2, 1.3, and 1.4, is a crucial observation of Prause [Pra07]
that the image f(Rn) of an embedding f : RN → RN with small weak quasisymmetry constant
H̃f (B

N(x, r)) along x ∈ Rn can be locally approximated by n-dimensional planes in RN with
correspondingly small error. See §3 for precise formulations of approximation of a set by planes
and related criterion for bi-Lipschitz parameterization by subsets of Rn. To prove Theorem 1.1,
the authors of [BGRT14] gave a refinement of Prause’s estimate in the special case n = N − 1

and used it check the hypothesis of a bi-Lipschitz parameterization theorem from [Tor95]. This
approach had two limitations, which we show how to sidestep below. First and foremost the
bi-Lipschitz parameterization theorem of [Tor95] requires strong bilateral affine approximation
estimates for f(Rn), which we (still) do not know how to verify in the case of higher codimension
(1 ≤ n ≤ N − 2). In its place, we now use a more flexible parameterization theorem from
[DT12], which only requires strong unilateral affine approximation estimates and weak bilateral
affine approximation estimates (see Theorem 3.4 below). Checking the hypothesis of the new
parameterizations theorem for quasiplanes in arbitrary codimension is non-trivial and requires
several new estimates, but is within reach. See §4 for a detailed outline of our approach.
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The second limitation from [BGRT14] that we address is how to relax the strong uniformity
in condition (1.2). In particular, to prove Theorem 1.4, we develop a tool for extending quasi-
symmetric mappings that are locally “almost affine”. This extension result (Theorem 8.1) is of
independent interest. For the definition of an almost affine map and the statement of the extension
theorem, see §4.2 and §8, respectively. Roughly speaking, we show that if a map f : E → RN

defined on a closed set E ⊂ Rn is approximately affine at all scales and locations in a suitable
sense, then it extends to a global map F : Rn → RN that is still almost affine and is smooth
away from E. Moreover, if the affine approximations to f are uniformly quasisymmetric, then
the map F is quasisymmetric. This is related to investigations by Tukia and Väisälä (see [TV84]
and [Väi86]) on sets E ⊂ Rn with the quasisymmetric extension property, i.e. sets on which
every embedding f : E → RN with small quasisymmetric distortion can be extended to a
quasisymmetric map on Rn. As shown by the first author (see [Azz]), understanding the approx-
imation properties of a quasisymmetric map by affine maps is critical to decoding the geometry
of its image.

The remainder of the paper is organized as follows. To start, we give two preliminary sections,
which contain the necessary background on quasisymmetric and quasiconformal maps (§2) and
affine approximation and bi-Lipschitz parameterization of sets (§3). Next, we outline the new
ingredients appearing in the proofs of the main theorems in §§4.1–4.2; and, we record the proofs
of the main theorems in §4.3. In the second half of the paper, §§5–9, we verify the new claims
in §4. The contents of these latter sections are described in the outline in §4.

Throughout the sequel, we write a . b (or b & a) to denote that a ≤ Cb for some absolute
constant 0 < C <∞ and write a ∼ b if a . b and b . a. Likewise we write a .t b (or b &t a)
to denote that a ≤ Cb for some constant 0 < C < ∞ that may depend on a list of parameters t
and write a ∼t b if a .t b and b .t a.

2. Preliminaries I: quasisymmetric and quasiconformal maps

This section is intended to be a quick overview of the definitions of quasisymmetric, weakly
quasisymmetric, and quasiconformal maps; the relationships between them; and a smattering
of their essential properties. For additional background, we refer the reader to Väisälä [Väi71],
and Heinonen [Hei01]. Lemma 2.5, Corollary 2.9, as well as the derivation of Corollary 2.12
from Theorem 2.11 are standard exercises, whose proofs are included for the convenience of the
reader.

A topological embedding f : X → Y from a metric space (X, dX) into a metric space (Y, dY )
is a map that is a homeomorphism onto its image f(X). A quasisymmetric map f : X → Y is
a topological embedding that “preserves relative distances” in the sense that

dX(a, x) ≤ t dX(b, x) =⇒ dY (f(a), f(x)) ≤ η(t) dY (f(b), f(x))

for all a, b, x ∈ X and t > 0, for some increasing homeomorphism η : (0,∞) → (0,∞) called
a control function for f . A map f : X → Y is called η-quasisymmetric if f is quasisymmetric
and η is a control function for f .
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Quasisymmetric maps behave well under three basic map operations. First, the restriction
f |A of an η-quasisymmetric map f : X → Y to a subset A ⊂ X is again η-quasisymmetric.
Second, the inverse f−1 : f(X) → X of f is η′-quasisymmetric, where η′(t) = 1/η−1(1/t) for
all t > 0. Third, the composition g ◦ f : X → Z of f with a ζ-quasisymmetric map g : Y → Z

is (ζ ◦ η)-quasisymmetric.
Quasisymmetric embeddings map bounded spaces onto bounded spaces, quantitatively.

Lemma 2.1 ([Hei01, Proposition 10.8]). If f : X → Y is η-quasisymmetric and A ⊂ B ⊂ X

are such that 0 < diamA ≤ diamB <∞, then

1

2η
(
diamB
diamA

) ≤ diam f(A)

diam f(B)
≤ η

(
2 diamA

diamB

)
.

A weakly quasisymmetric map f : X → Y is a topological embedding such that

Hf (X) := inf{H ≥ 1 : dX(a, x) ≤ dX(b, x) =⇒
dY (f(a), f(x)) ≤ H dY (f(b), f(x)) for all a, b, x ∈ X} <∞.

The quantity Hf (X) is called the weak quasisymmetry constant of the map f on X . A map
f : X → Y is weaklyH-quasisymmetric if f is weakly quasisymmetric andHf (X) ≤ H <∞.

Every quasisymmetric map is weakly quasisymmetric. To wit, if f is an η-quasisymmetric
map on X , then Hf (X) ≤ η(1). In fact, for every quasisymmetric map f on X there exist
(many) control functions ηf such that Hf (X) = ηf (1). Less obvious, however, is the fact that
for certain metric spaces every weakly quasisymmetric map is quasisymmetric. A metric space
X is called doubling if there is a positive integer D = D(X) so that every set of diameter d in
the space can be covered by at most D sets of diameter at most d/2.

Theorem 2.2 ([Hei01, Theorem 10.19]). Let X and Y be doubling metric spaces. If X is
connected and f : X → Y is weakly quasisymmetric, then f is η-quasisymmetric for some
control function η depending only on doubling character of X and Y , and on Hf (X).

In particular, weakly quasisymmetric maps between Euclidean spaces are quasisymmetric.

Corollary 2.3 ([Hei01, Corollary 10.22]). LetX ⊂ Rn be a connected set and let f : X → RN .
If f is weakly quasisymmetric, then f is η-quasisymmetric for some control function depending
only on n, N , and Hf (X).

Theorem 2.4 ([Hei01, Theorem 10.30]). Let X ⊂ Rn be a connected set containing x1 ̸= x2.
For all H ≥ 1, the family of weaklyH-quasisymmetric maps f : X → RN such that f(xi) = xi
for i = 1, 2 is sequentially compact in the topology of uniform convergence on compact sets.

Here is a useful criterion for checking that a map from one Euclidean space into another is
weakly quasisymmetric.

Lemma 2.5. If f : Rn → RN is continuous, nonconstant, and Hf (Rn) < ∞, then f is weakly
quasisymmetric.
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Proof. Suppose f : Rn → RN is continuous, nonconstant, and Hf (Rn) < ∞. To show that f
is weakly quasisymmetric we must prove f is injective and f−1 : f(Rn) → Rn is continuous.

Assume to reach a contradiction that f(x0) = f(z0) for some x0 ̸= z0, and let r > 0 denote
the distance between x0 and z0. Then

|f(x0)− f(y)| ≤ Hf (Rn)|f(x0)− f(z0)| = 0 for all |x0 − y| ≤ r,

sinceHf (Rn) <∞. That is, f is constant onBn(x0, r). Let x1 ∈ ∂Bn(x0, r) denote the unique
point such that |x0 − x1| = r and |z0 − x1| = 2r. Then f(x1) = f(x0) = f(z0) and

|f(z0)− f(y)| ≤ Hf (Rn)|f(z0)− f(x1)| = 0 for all |z0 − y| ≤ 2r,

since Hf (Rn) < ∞. That is, f is constant on Bn(z0, 2r). Let z1 ∈ ∂Bn(z0, 2r) denote the
unique point such that |z0 − z1| = 2r and |x1 − z1| = 4r. Proceeding inductively, we see that f
is constant on a sequence of balls,

Bn(x0, r) ⊂ Bn(z0, 2r) ⊂ Bn(x1, 4r) ⊂ Bn(z1, 8r) ⊂ · · · ,

exhausting Rn. This contradicts the hypothesis that f is nonconstant. Therefore, f is injective.
Let R̂n = Rn ∪ {∞} and R̂N = RN ∪ {∞} denote the one-point compactifications of Rn

and RN , respectively. Extend f to an injective map F : R̂n → R̂N by defining F (∞) = ∞
and F (x) = f(x) for all x ∈ Rn. Every injective continuous map from a compact space onto
a Hausdorff space is open. Thus, if F is continuous, then f−1 = F−1|f(Rn) is continuous too.
In other words, to check that f−1 is continuous, it suffices to prove F is continuous. Because
F |Rn = f is continuous, the full map F is continuous if and only if f(xi) → ∞ for every
sequence (xi)∞i=1 in Rn such that xi → ∞.

Let (xi)∞i=1 be any sequence in Rn such that xi → ∞. By truncating a finite number of terms,
we may assume without loss of generality that ri := |xi − x1| ≥ |x2 − x1| > 0 for all i ≥ 2.
Note that ri → ∞, since xi → ∞. For all i ≥ 2, let fi denote the restriction of f to Bn(x1, ri).
Then fi is open, again because every one-to-one continuous map from a compact space onto a
Hausdorff space is open. Thus, each fi is a topological embedding fromBn(x1, ri) into RN with
Hfi(B

n(x1, i)) ≤ Hf (Rn) <∞. By Corollary 2.3, the maps fi are uniformly η-quasisymmetric
for some control function η that is independent of i. Hence

|f(xi)− f(x1)| ≥
|f(x2)− f(x1)|

η(r2/ri)
→ ∞ as i→ ∞,

since limi→∞ η(r2/r1) = 0. It follows that f(xi) → ∞. Therefore, f−1 is continuous. �

A quasiconformal map1 f : Ω → RN is a topological embedding from a domain Ω ⊂ RN

(N ≥ 2) such that f ∈ W 1,N
loc (Ω) and

Kf (Ω) := ess sup
x∈Ω

max

{
λN(f, x)

N

λ1(f, x) · · ·λN(f, x)
,
λ1(f, x) · · ·λN(f, x)

λ1(f, x)N

}
<∞.

1There are three commonly used definitions of quasiconformal maps in Euclidean space, which are equivalent
a posteriori. The definition given here is called the analytic definition of a quasiconformal map. The others are the
so-called geometric and metric definitions; for the full story, see e.g. [Hei06] or [Väi71].
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Here 0 ≤ λ1(f, x) ≤ · · · ≤ λN(f, x) < ∞ denote the singular values of the total derivative
Df(x) of f at x, i.e. the (positive) square root of the eigenvalues of (Df(x))TDf(x), which are
defined at almost every x ∈ Ω. The quantityKf (Ω) is called the maximal dilatation of the map f
inΩ. A quasiconformal map f is calledK-quasiconformal ifKf (Ω) ≤ K <∞. If f : Ω → RN

is K-quasiconformal, then the inverse g = f−1 : f(Ω) → Ω is also K-quasiconformal.
Every quasisymmetric map f : Ω → RN on a domain Ω ⊂ RN (N ≥ 2) is quasiconformal

with Kf (Ω) ≤ Hf (Ω)
N−1. In the other direction, the situation is as follows.

Theorem 2.6 ([Hei01, Theorem 11.14]). Every quasiconformal map f : RN → RN is ηN,K-
quasisymmetric for some control function ηN,K depending only on N and K = Kf (RN).

Quasiconformal maps exhibit special behavior when K = 1. Recall that a homeomorphism
f : X → X in a metric space (X, dX) is a similarity if there exists a constant 0 < λ < ∞ such
that dX(f(x), f(y)) = λdX(x, y) for all x, y ∈ X . The group of similarities in Euclidean space
is generated by compositions of translations, rotations, reflections, and dilations.

Theorem 2.7 ([Ahl06, Theorem II.2]). If N = 2 and f : Ω → R2 is a 1-quasiconformal map,
then f is a conformal map.

Theorem 2.8 ([Geh62, Theorem 16]). If N ≥ 3 and f : Ω → RN is a 1-quasiconformal map,
then f is the restriction of a Möbius transformation of R̂N = RN ∪ {∞} to Ω.

Corollary 2.9. IfN ≥ 2 and f : BN(x, r) → RN is weakly 1-quasisymmetric for some x ∈ RN

and r > 0, then f is the restriction of a similarity of RN to BN(x, r).

Proof. Suppose N ≥ 2. Since the composition of a weakly 1-quasisymmetric map with a simi-
larity in the domain is still weakly 1-quasisymmetric, it suffices to prove the lemma on the unit
ball. Suppose that f : BN(0, 1) → RN is a weakly 1-quasisymmetric map. Replacing f(x)
by f(x) − f(0) for all x ∈ RN , which leaves the quasisymmetry of f untouched, we may also
suppose without loss of generality that f(0) = 0. On one hand,

|x− a| = |y − a| =⇒ |f(x)− f(a)| = |f(y)− f(a)| for all x, y, a ∈ BN(0, 1),

because f is weakly 1-quasisymmetric. Hence f mapsBN(0, 1) onto a ball in RN centered at 0.
On the other hand, by Corollary 2.3, f is quasisymmetric. Thus, the restriction f◦ = f |BN

◦ (0,1)

of f to the open unit ball is quasiconformal with Kf◦(B
N
◦ (0, 1)) ≤ Hf (B

N(0, 1))N−1 = 1.
That is, f is a 1-quasiconformal map. When N ≥ 3, we conclude that f◦ is the restriction of
some Möbius transformation F on R̂N by Theorem 2.8. WhenN = 2, we conclude that f◦ is the
restriction of some Möbius transformationF on the Riemann sphere R̂2, because f◦ is conformal
by Theorem 2.7 and maps the unit disk onto a disk. Finally, since F maps a ball centered at the
origin onto a ball centered at the origin, F must fix the point at infinity. Therefore, the map f◦
is the restriction of a similarity of RN . The same conclusion extends to f by continuity. �

Quasiconformal maps are locally Hölder continuous with exponent depending only on the
dimension and the maximal dilatation of the map.
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Theorem 2.10 ([Vuo88, Theorem 11.14]). Given N ≥ 2 and 1 ≤ K < ∞, put α = K1/(1−N).
If f : BN

◦ (x, r) → RN is K-quasiconformal, then

|f(y)− f(z)| .N,K

(
sup

|w−x|<r

|f(w)− f(x)|

)∣∣∣y
r
− z

r

∣∣∣α for all y, z ∈ BN(x, r/2).

For any domain Ω ⊂ RN and map f : Ω → RN , the maximal stretching Lf : Ω → [0,∞] of
f is defined by

Lf (x) = lim sup
y→x

|f(x)− f(y)|
|x− y|

for all x ∈ Ω.

If f is quasiconformal, then Lf (x) = λN(f, x) and Jf(x) ≤ Lf (x)
N ≤ Kf (Ω)Jf(x) at L N -

a.e. x, where Jf(x) = λ1(f, x) · · ·λN(f, x) denotes the Jacobian determinant of f at x. Gehring
[Geh73] proved that if f is quasiconformal, then Lf satisfies a reverse Hölder inequality.

Theorem 2.11 ([Geh73, Lemmas 3,4]). If N ≥ 2 and f : Ω → RN is a quasiconformal map,
then there are constants c > 0 and p > 0 depending only on N and Kf (Ω) such that for every
closed cube Q ⊂ Ω satisfying diam f(Q) < dist(f(Q), ∂f(Ω)),(

−
∫
Q

LN+p
f dL N

)1/(N+p)

≤ c−
∫
Q

Lf dL
N . (2.1)

Corollary 2.12. If N ≥ 2 and f : RN → RN is a quasiconformal map, then there is a constant
q > 0 depending only on N and Kf (RN) such that

L N(f(A))

L N(f(Q))
≥ 1

2
exp

(
−qL

N(Q)

L N(A)

)
(2.2)

for every closed cube Q ⊂ RN and every Borel set A ⊂ Q.

Proof. Suppose f : RN → RN is quasiconformal and let K := Kf (RN). By Theorem 2.11,
Lf satisfies the reverse Hölder inequality (2.1) for some constants c > 0 and p > 0 depending
only on N and K. Let Q ⊂ RN be any closed cube. Because Jf(x) ≤ Lf (x)

N ≤ K Jf(x) at
L N -a.e. x ∈ RN , we see that Jf also satisfies a reverse Hölder inequality:(

−
∫
Q

Jf
N+p
N dL N

) N
N+p

≤
(
−
∫
Q

LN+p
f dL N

) N
N+p

≤ cN
(
−
∫
Q

Lf dL
N

)N

≤ cN−
∫
Q

LN
f dL

N ≤ KcN−
∫
Q

Jf dL N .

(2.3)

In particular, the Jacobian Jf of f is an A∞ weight with respect to Lebesgue measure L N ;
e.g., see [Gra09, Chapter 9] or [Ste93, Chapter V]. Therefore, by Hruščev’s inequality for A∞
weights [Hru84, (7)], there is q > 0 such that for all cubes Q ⊂ RN and Borel sets A ⊂ Q,

w(A)

w(Q)
≥ 1

1 + exp
(
qL N (Q)

L N (A)

) ≥ 1

2
exp

(
−qL

N(Q)

L N(A)

)
,

where w(E) =
∫
E
Jf dL N = L N(f(E)) for all Borel sets E ⊂ RN . The constant q depends

only on the constants in (2.3), and thus, q ultimately depends only on N and K. �
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The conclusion of Corollary 2.12 does not hold for quasisymmetric maps in RN whenN = 1;
in fact, by an example of Beurling and Ahlfors [BA56], a quasisymmetric map f : R → R can
map a set of positive Lebesgue measure onto a set of Lebesgue measure zero.

3. Preliminaries II: local flatness and bi-Lipschitz parameterizations

In this section and implicitly below, whenever using the quantities defined in Definition 3.1,
we assume that 1 ≤ n ≤ N−1. Let G = GN,n denote the affine Grassmannian of n-dimensional
planes inRN , and let G(x) = GN,n(x) = {V ∈ GN,n : x ∈ V } denote the subcollection of planes
containing x ∈ RN . We write a ∨ b to denote the maximum of a, b ∈ R.

Definition 3.1 (Measurements of local flatness of sets). For all E ⊂ RN , x ∈ E and r > 0,
define the quantities 0 ≤ βE(x, r) ≤ βctr

E (x, r) ≤ θE(x, r) ≤ 1 by

βE(x, r) := inf
V ∈G

1

r

(
sup

y∈E∩BN (x,r)

dist(y, V )

)
,

βctr
E (x, r) := inf

V ∈G(x)

1

r

(
sup

y∈E∩BN (x,r)

dist(y, V )

)
,

and

θE(x, r) := inf
V ∈G(x)

1

r

((
sup

y∈E∩BN (x,r)

dist(y, V )

)
∨

(
sup

z∈V ∩BN (x,r)

dist(z, E)

))
.

Each of the measurements of flatness defined in Definition 3.1 satisfy a monotonicity property:
an estimate of flatness at one scale yields (worse) estimates of flatness on smaller scales. Namely,
for all E ⊂ RN , x ∈ E, r > 0 and s ∈ (0, 1],

βE(x, sr) ≤s−1βE(x, r), βctr
E (x, sr) ≤ s−1βE(x, r),

and θE(x, sr) ≤ s−1θE(x, r).
(3.1)

In addition, if BN(y, sr) ⊂ BN(x, r) for some x, y ∈ E and r, s > 0, then

βE(y, sr) ≤ s−1βE(x, r). (3.2)

Remark 3.2 (Origins and choice of conventions). Beta numbers were originally introduced by
Jones [Jon90] in order to characterize subsets of rectifiable curves in the plane. For analogues of
Jones’ Traveling Salesman Theorem in higher dimensions, see [Oki92] and [Sch07]. Because

βE(x, r) ≤ βctr
E (x, r) ≤ 2βE(x, r) (3.3)

for all E ⊂ RN , x ∈ E and r > 0, the decision to use “uncentered” beta numbers βE(x, r) or
“centered” beta numbers βctr

E (x, r) is largely a matter of taste and may depend on the application.
We use the former below, except in a theorem which we quote from [DT12] that chose the latter.

In some instances, see e.g. [Tor95], [BGRT14], the theta numbers θE(x, r) are replaced by
the strictly larger numbers

θHD
E (x, r) := inf

V ∈G(x)

1

r
HD

(
E ∩BN(x, r), V ∩BN(x, r)

)
,
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where HD(Y, Z) = (supy∈Y dist(y, Z)) ∨ (supz∈Z dist(z, Y )) denotes the Hausdorff distance
between bounded sets Y, Z ⊂ RN . The quantity θHD

E (x, r) is more difficult to estimate than
θE(x, r) (e.g., θHD

E (x, r) does not satisfy (3.1)). Thus we choose to use the latter below.
Closed sets that are locally uniformly close to planes at all locations and scales first appeared in

Reifenberg’s solution of the Plateau problem in arbitrary codimension [Rei60]; following [KT97]
these sets are now called Reifenberg flat sets. Precisely, in this paper, we say that a closed set
Σ ⊂ RN is (δ, R)-Reifenberg flat if θΣ(x, r) ≤ δ for all x ∈ Σ and 0 < r < R. Mattila and
Vuorinen [MV90] (independently of Jones [Jon90]) introduced the following related definition,
in the context of obtaining upper Minkowski and Hausdorff dimension bounds for quasispheres.
A set Σ ⊂ RN is said to have the (δ, R)-linear approximation property if βctr

E (x, r) ≤ δ for all
x ∈ Σ and 0 < r < R. Trivially every subset of a (δ, R)-Reifenberg flat set has the (δ, R)-linear
approximation property. However, there exist sets with the (δ, R)-linear approximation property
that do not belong to any (δ, R′)-Reifenberg flat sets; e.g., see [DT12, Counterexample 12.4].

We now present a version of Reifenberg’s topological disk theorem, which gives a sufficient
condition for a closed set Σ ⊂ RN to be locally bi-Hölder equivalent to open subsets of Rn.

Theorem 3.3 (Local version of Reifenberg’s topological disk theorem [DT12, Theorem 1.1]).
There exists δ0 = δ0(n,N) > 0 with the following property. If Σ ⊂ RN is closed, x0 ∈ Σ,
r0 > 0, 0 < δ ≤ δ0, and θΣ(x, r) ≤ δ for all x ∈ Σ ∩ BN(x0, 10r0) and 0 < r ≤ 10r0, then
there exist a bijective mapping g : RN → RN and an n-dimensional plane V containing x0 such
that

|g(x)− x| ≤ r0
100

for all x ∈ RN ,

r0
4

∣∣∣∣ xr0 − y

r0

∣∣∣∣1.01 ≤ |g(x)− g(y)| ≤ 3r0

∣∣∣∣ xr0 − y

r0

∣∣∣∣0.99
for all x, y ∈ Rn such that |x− y| ≤ r0, and

Σ ∩BN(x0, r0) = g(V ) ∩BN(x0, r0).

In [DT12], the third named author, together with Guy David, found several conditions that
guarantee that the parameterization in Reifenberg’s topological disk theorem is bi-Lipschitz.

Theorem 3.4 (Local bi-Lipschitz parameterization [DT12, Theorem 1.3]). For every M < ∞,
there exists L = L(n,N,M) < ∞ with the following property. If Σ ⊂ RN is closed, x0 ∈ Σ,
r0 > 0, 0 < δ ≤ δ0, and θΣ(x, r) ≤ δ for all x ∈ Σ ∩BN(x0, 10r0) and 0 < r ≤ 10r0, and

sup
x∈Σ∩BN (x0,10r0)

∞∑
k=0

βctr
Σ (x, 10−kr0)

2 ≤M <∞, (3.4)

then the mapping g provided by Theorem 3.3 can be chosen to satisfy
|x− y|
L

≤ |g(x)− g(y)| ≤ L|x− y| for all x, y ∈ RN . (3.5)

Corollary 3.5 (Global bi-Lipschitz parameterization). Suppose that Σ ⊂ RN is closed, x0 ∈ Σ,
0 < δ < δ0, and θΣ(x, r) ≤ δ for all x ∈ Σ and r > 0. If there exists M < ∞ such that (3.4)
holds for all r0 > 0, then there exists a map g : RN → RN satisfying (3.5) such that Σ = g(Rn).
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Proof. Let δ0 > 0 be the constant from Theorem 3.3. Suppose that Σ ⊂ RN is a closed set,
x0 ∈ Σ, 0 < δ < δ0 and θΣ(x, r) ≤ δ for all x ∈ Σ and r > 0. Furthermore, suppose that for
some M < ∞ condition (3.4) holds for all r0 > 0. By Theorem 3.4, applied with r0 = i ≥ 1,
for all i ≥ 1 there exists a an n-dimensional plane V i containing x0 and a map gi : RN → RN

satisfying (3.5) such that Σ∩BN(x0, i) = gi(V i)∩BN(x0, i). For all i ≥ 1, choose an isometry
hi : RN → RN such that hi(Rn) = V i and gi(hi(0)) = x0. The composed maps f j := gj ◦ hj
have the property that Σ ∩BN(x0, i) = f j(Rn) ∩Bn(x0, i) for all 1 ≤ i ≤ j, f j(0) = x0, and

L−1|x− y| ≤ |f j(x)− f j(y)| ≤ L|x− y| for all x, y ∈ RN and j ≥ 1. (3.6)

In particular, the family {f j : j ≥ 1} is equicontinuous, pointwise bounded, and

f j(Bn(0, Li)) ∩BN(x0, i) = Σ ∩BN(x0, i) for all 1 ≤ i ≤ j. (3.7)

By the Arzelà-Ascoli theorem, there exists a continuous map g : RN → RN and a subsequence
of (f j)∞j=1 that converges to g uniformly on compact sets. From (3.6) and (3.7), we conclude
that g satisfies (3.5) and g(Rn) = Σ. �
Remark 3.6. A careful reading of the proof of [DT12, Theorem 1.3] shows that in Theorem 3.4
and Corollary 3.5, when n and N are fixed, the constant L = L(n,N,M) → 1 as M → 0.

We end this section with a short computation related to (3.4).

Lemma 3.7. If Σ ⊂ RN is closed, x ∈ Σ, and r0 > 0, then
∞∑
k=0

βctr
Σ (x, 10−kr0)

2 ≤ 400

log(10)

∫ 10r0

0

βΣ(x, r)
2dr

r
. (3.8)

Proof. Let Σ ⊂ RN closed, x ∈ Σ, and r0 > 0 be given. If r ∈ [10−kr0, 10
−(k−1)r0], then

βctr
Σ (x, 10−kr0) ≤ 10βctr

Σ (x, r) ≤ 20βΣ(x, r),

where the first inequality holds by (3.1) and the second inequality holds by (3.3). Therefore,∫ 10r0

0

βΣ(x, r)
2dr

r
=

∞∑
k=0

∫ 10−(k−1)r0

10−kr0

βΣ(x, r)
2dr

r

≥ 1

400

∞∑
k=0

∫ 10−(k−1)r0

10−kr0

βctr
Σ (x, 10−kr0)

2dr

r
=

log(10)

400

∞∑
k=0

βctr
Σ (x, 10−kr0)

2.

Rearranging the inequality yields (3.8). �

4. Outline of new ingredients in and proofs of the main theorems

4.1. Quasisymmetry and local flatness of quasiplanes. The connection between distortion of
local flatness and quasiconformal maps was first recognized by Mattila and Vuorinen [MV90] as
a tool to establish upper bounds on the Minkowski and Hausdorff dimensions of quasispheres.
Prause [Pra07] obtained improved estimates on the dimension of quasispheres, by estimating the
distortion of beta numbers using the quasisymmetry of a global quasiconformal map in place of
the maximal dilatation. The following theta number variant of [Pra07, Theorem 5.1] was a key
tool in the proof of Theorem 1.1 stated above.
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Lemma 4.1 ([BGRT14, Lemma 2.3]). Suppose that 1 ≤ n = N−1. Let V be an n-dimensional
plane in RN , let v ∈ V and let e ∈ (V − v)⊥ be a unit vector. For any topological embedding
f : BN(v, r) → RN ,

θHD
f(V )

(
f(v),

1

4
|f(v + re)− f(v − re)|

)
≤ 20H̃f (B

N(v, r)).

Below we generalize the previous lemma to arbitrary codimension, at the expense of obtaining
a beta number estimate instead of a theta number estimate. Lemma 4.2 (which we prove in §5)
is a quantitative local version of [Pra07, Theorem 5.6].

Lemma 4.2. Suppose that 1 ≤ n ≤ N − 1. Let V be an n-dimensional plane in RN , let v ∈ V ,
and let e be a unit vector in RN . For any topological embedding f : BN(v, 2r) → RN ,

βf(V )

(
f(v),

1

2
|f(v + re)− f(v)|

)
≤ 72NH̃f (B

N(v, 2r)).

When combined with the local Hölder continuity of quasiconformal maps, Lemma 4.2 yields
the following corollary. See §5 for details.

Corollary 4.3. Suppose that 1 ≤ n ≤ N − 1 and H ≥ 1. There is C = C(N,H) > 1 such that
if z ∈ Rn, t > 0, f : BN

◦ (z, 2t) → RN is quasiconformal, and Hf (B
N(z, t)) ≤ H , then∫ diam f(BN (z,t))/C

0

βf(Rn)(f(z), s)
2ds

s
≤ C

∫ t

0

H̃f (B
N(z, s))2

ds

s
. (4.1)

4.2. Almost affine quasisymmetric maps and extension theorems. Throughout this section
and implicitly below, whenever using the concepts defined in Definitions 4.4 and 4.5, we assume
that 1 ≤ n ≤ N . For all affine maps A : Rn → RN , let A′ denote the linear part of A, let ∥A′∥
denote the operator norm of A′, and let λ1(A′) ≤ · · · ≤ λn(A

′) denote the singular values of A′.
We recall that for all x ∈ Rn and r > 0,

λ1(A
′)r = inf

|x−y|=r
|A(x)− A(y)| and λn(A

′)r = sup
|x−y|=r

|A(x)− A(y)| = ∥A′∥r. (4.2)

Definition 4.4. A family of affine maps over E ⊂ Rn is a set

A = {Ax,r : x ∈ E, r > 0}

whose members are (indexed) affine maps Ax,r : Rn → RN for all x ∈ E and r > 0. We say
that A is ε-compatible for some ε > 0 if

∥A′
x,r − A′

y,s∥ ≤ εmin{∥A′
x,r∥, ∥A′

y,s∥}

for all x, y ∈ E and r, s > 0 such that |x− y| ≤ max{r, s} and 1/2 ≤ r/s ≤ 2.

Definition 4.5. Let E ⊂ X ⊂ Rn and let ε > 0. A map f : X → RN is ε-almost affine over E
if there exists an ε-compatible family A of affine maps over E such that

sup
z∈E∩Bn(x,r)

|f(z)− Ax,r(z)| ≤ ε∥A′
x,r∥r for all x ∈ E, r > 0.

To emphasize a choice of some family A with this property, we say (f, E,A) is ε-almost affine.
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Remark 4.6. The definition of an almost affine map is designed so that being almost affine is
invariant under translation, rotation, reflection, and dilation in the domain and the image of the
map. That is, if ϕ : Rn → Rn and ψ : RN → RN are similarities in Rn and RN , respectively,
then (f, E,A) is ε-almost affine if and only if (ψ ◦ f ◦ ϕ, ϕ−1(E), ψ ◦ A ◦ ϕ) is ε-almost affine.
For related classes of maps that also admit uniform approximations by affine maps but do not
enjoy the same scale-invariance property as almost affine maps, see [DPK09] and [AS12].

We record a number of useful estimates for compatible families of affine maps and for almost
affine maps in §6.

The next lemma provides a criterion to check the theta number hypothesis in Theorem 3.4 and
Corollary 3.5 for a set Σ ⊂ RN of the form Σ = f(Rn).

Lemma 4.7. For all δ > 0 there exists δ∗ = δ∗(δ) with the following property. Suppose that
f : Rn → RN is quasisymmetric and Hf (Rn) ≤ H . If f is δ∗-almost affine over Bn(x0, 2r0)

and H̃f (B
n(x0, 2r0)) ≤ δ∗ for some x0 ∈ Rn and r0 > 0, then

θf(Rn)(f(x), r) ≤ Hδ for all x ∈ Bn(x0, r0) and 0 < r ≤ 1

54H
diam f(Bn(x0, r0)). (4.3)

Thus, if f is δ∗-almost affine over Rn and H̃f (Rn) ≤ δ∗, then f(Rn) is (Hδ,∞)-Reifenberg flat,
i.e. θf(Rn)(f(x), r) ≤ Hδ for all x ∈ Rn and r > 0.

The following theorem says that quasisymmetric maps with small constant between Euclidean
spaces of the same dimension are almost affine when restricted to lower dimensional subspaces.

Theorem 4.8. Suppose N ≥ 2. For all τ > 0, there exists τ∗ = τ∗(τ,N) > 0 such that if
BN(x, 3r) ⊂ Y ⊂ RN for some x ∈ Rn and r > 0, f : Y → RN is quasisymmetric and
H̃f (B

N(x, 3r)) ≤ τ∗, then f |Y ∩Rn is τ -almost affine over Bn(x, r).

See §7 for the proofs of Lemma 4.7 and Theorem 4.8. At this point, we have collected enough
tools to prove Theorems 1.2 and 1.3.

The final ingredient in the proof of Theorem 1.4 is the following extension theorem.

Theorem 4.9. Suppose 1 ≤ n ≤ N − 1. For all ε > 0, there exists ε∗ = ε∗(ε, n) > 0 with
the following property. If for some x ∈ Rn and r > 0 a map f : RN → RN is ε∗-almost affine
over Bn(x, 9r), f |BN (x,3r) is a topological embedding and H̃f (B

N(x, 3r)) ≤ ε∗, and there exist
a closed set E ⊂ Bn(x, r) and constants γE > 0 and CE > 0 such that

diamE ≥ γE diamBn(x, r) (4.4)

and ∫ r

0

H̃f (B
N(y, s))2

ds

s
≤ CE for all y ∈ E, (4.5)

then there exists a quasisymmetric map F : Rn → RN such that F |E = f |E , F is ε-almost affine
over Rn, H̃F (Rn) ≤ ε, diamF (Bn(x, r)) ∼n,N,γE diam f(Bn(x, r)), and∫ ∞

0

βF (Rn)(F (y), s)
2 ds

s
.n,N CE + ε2 for all y ∈ Rn. (4.6)
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The proof of Theorem 4.9 is somewhat involved, and so, we break the proof into several steps.
In §8, we prove general extension theorems for almost affine maps and for quasisymmetric almost
affine maps, which are interesting in their own right; see Theorem 8.1 and Theorem 8.2. Then
we establish beta number estimates on the extensions and verify Theorem 4.9 in §9.

Remark 4.10. Theorem 4.8 and Theorem 4.9 were inspired by Tukia and Väisälä’s work on
extensions of quasisymmetric maps that are close to similarities; see [TV84] and [Väi86].

4.3. Proofs of Theorem 1.2, Theorem 1.3, and Theorem 1.4. The proofs of Theorem 1.2 and
1.3 are very similar. We shall first prove Theorem 1.3 and then indicate how to modify the proof
for Theorem 1.2. We then end with the proof of Theorem 1.4.

Proof of Theorem 1.3. Assume that 1 ≤ n ≤ N − 1 and H ≥ 1. We will work with certain
parameters, chosen as follows.

(1) Pick any δ ∈ (0, δ0/H] where δ0 = δ0(n,N) is the constant from Theorem 3.3.
(2) Let δ∗ = δ∗(δ) be the constant from Lemma 4.7 corresponding to δ.
(3) Let τ∗ = τ∗(τ,N) denote the constant from Theorem 4.8 corresponding to τ = δ∗.

Let f : RN → RN be a quasiconformal map such that (1.3) holds and suppose Hf (Rn) = H .
We want to show that the quasiplane f(Rn) is locally bi-Lipschitz equivalent to subsets of Rn.
Fix any x0 ∈ Rn. Then

sup
x∈Bn(x0,1)

∫ 1

0

H̃f (B
N(x, r))2

dr

r
=: A <∞ (4.7)

by (1.3). In particular, since H̃f (B
N(x, r)) is increasing as a function of r, H̃f (B

N(x0, r)) → 0

as r → 0. Hence we can find 0 < r0 ≤ 1/6 such that

H̃f (B
N(x0, 6r0)) ≤ min{1, δ∗, τ∗}. (4.8)

First off, f is δ∗-almost affine over Bn(x0, 2r0) by Theorem 4.8, since H̃f (B
N(x0, 6r0)) ≤ τ∗.

Thus, writing s0 := (1/540H) diam f(Bn(x0, r0)), we see that

θf(Rn)(y, s) ≤ Hδ ≤ δ0 for all y ∈ f(Rn) ∩BN(f(x0), 10s0) and 0 < s ≤ 10s0 (4.9)

by Lemma 4.7, since f is δ∗-almost affine over Bn(x0, 2r0) and H̃f (B
n(x0, 2r0)) ≤ δ∗. Next,

by (4.7) and Corollary 4.3 there is a constant C = C(N,H ′) > 1 such that∫ diam f(BN (x,r0))/C

0

βf(Rn)(f(x), s)
2ds

s
≤ AC (4.10)

for all x ∈ BN(x0, r0), where H ′ = Hf (B
N(x, r0)) ≤ 2 by (4.8). Hence C actually depends

on at most N . We would like to replace diam f(BN(x, r0)) in the upper limit of integration in
(4.10) with diam f(Bn(x0, r0)). To that end, we note that f |BN (x0,6r0) is η-quasisymmetric for
some control function η that depends only on n and N , by Corollary 2.3 and (4.8). Thus, by
Lemma 2.1,

diam f(Bn(x0, r0))

diam f(BN(x0, 6r0))
≤ 2η(6)η(1/3)

diam f(BN(x, r0))

diam f(BN(x0, 6r0))
. (4.11)
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Let C ′ = 2η(6)η(1/3), which depends on at most n and N . Then, by (4.10) and (4.11),∫ diam f(Bn(x0,r0))/CC′

0

βf(Rn)(f(x), s)
2ds

s
≤ AC (4.12)

for all x ∈ Bn(x0, r0). Let 10t0 = min{10s0, diam f(Bn(x0, r0))/CC
′}. Then, by (4.9),

θf(Rn)(y, t) ≤ δ0 for all y ∈ f(Rn) ∩BN(f(x0), 10t0) and 0 < t ≤ 10t0, (4.13)

and, by Lemma 3.8 and (4.12),

sup
y∈f(Rn)∩BN (x0,10t0)

∞∑
k=0

βctr
f(Rn)(y, 10

−kt0)
2 ≤ 400

log(10)
AC. (4.14)

By (4.13), (4.14), and Theorem 3.4, there exists ann-dimensional planeV and anL2-bi-Lipschitz
map g : RN → RN for some L = L(n,N,A) (with L→ 1 as A→ 0 by Remark 3.6) such that

f(Rn) ∩BN(f(x0), t0) = g(V ) ∩BN(f(x0), t0).

Therefore, for every x0 ∈ Rn there exists t0 > 0 such that f(Rn)∩BN(f(x0), t0) is bi-Lipschitz
equivalent to a subset ofRn; that is, f(Rn) is locally bi-Lipschitz equivalent to subsets ofRn. �

Proof of Theorem 1.2. Let f : RN → RN be a quasiconformal map and assume that (1.2) holds.
We want to show that the quasiplane f(Rn) is locally (1 + δ)-bi-Lipschitz equivalent to subsets
of Rn for all δ > 0. Fix any x0 ∈ Rn. Then∫ 1

0

sup
x∈Bn(x0,1)

H̃f (B
N(x, r))2

dr

r
<∞.

Thus, given any A > 0, we can find ρ ∈ (0, 1) such that

sup
x∈Bn(x0,1)

∫ ρ

0

H̃f (B
N(x, r))2

dr

r
≤
∫ ρ

0

sup
x∈Bn(x0,1)

H̃f (B
N(x, r))2

dr

r
≤ A. (4.15)

Notice the similarity between (4.15) and (4.7). By mimicking the proof of Theorem 1.3, we can
find t0 > 0, an n-dimensional plane V , and an L2-bi-Lipschitz map g : RN → RN for some
L = L(n,N,A) (with L→ 1 as A→ 0) such that

f(Rn) ∩BN(f(x0), t0) = g(V ) ∩BN(f(x0), t0).

Therefore, because A > 0 can be chosen arbitrarily small, f(Rn) is locally (1 + δ)-bi-Lipschitz
equivalent to subsets of Rn for all δ > 0. �

Proof of Theorem 1.4. Assume that 2 ≤ n ≤ N − 1. We will work with certain parameters,
chosen as follows.

(1) Pick any δ ∈ (0, δ0/2], where δ0 = δ0(n,N) is the constant from Theorem 3.3.
(2) Let δ∗ = δ∗(δ) be the constant from Lemma 4.7 corresponding to δ.
(3) Let ε∗ = ε∗(ε, n) be the constant from Theorem 4.9 corresponding to ε = min{1, δ∗, C1/2

f }.
(4) Let τ∗ = τ∗(τ,N) denote the constant from Theorem 4.8 corresponding to τ = ε∗.
(5) Choose ρ ≤ min{τ∗, ε∗} sufficiently small such that exp(−Cf2

n/ρ2)/2 < 1/2.
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Let f : RN → RN be a quasiconformal map such that for someCf > 0 the Carleson condition
(1.4) holds for all x0 ∈ Rn and r0 > 0. Our goal is to identify big pieces of bi-Lipschitz images
of Rn in f(Rn) ∩ BN(ξ, s) for all ξ ∈ f(Rn) and s > 0. We shall do this indirectly, starting
with a location and scale in the domain.

Fix x0 ∈ Rn and r0 > 0. Put σ = exp(−Cf2
n/ρ2)/2 < 1/2. There exists 27r1 ∈ (σr0, r0/2)

and x1 ∈ Bn(x0, r0/2) such that H̃f (B
N(x1, 27r1)) ≤ ρ, otherwise∫

Bn(x0,r0)

∫ r0

0

H̃f (B
N(x, r))2

dr

r
dL n(x)

>

∫
Bn(x0,r0/2)

∫ r0/2

σr0

ρ2
dr

r
dL n(x) = CfL

n(Bn(x0, r0)),

which violates (1.4). Consider the set

G :=

{
x ∈ Bn(x1, r1) :

∫ r1

0

H̃f (B
N(x, r))2

dr

r
≤ 2Cf

}
.

By Chebyshev’s inequality and (1.4), the complement of G in Bn(x1, r1) has

L n(Bn(x1, r1) \G) ≤
1

2Cf

∫
Bn(x1,r1)

∫ r1

0

H̃f (B
N(x, r))2

dr

r
dL n(x) ≤ 1

2
L n(Bn(x1, r1)).

Hence L n(G) ≥ 1
2
L n(Bn(x1, r1)). Since Lebesgue measure is inner regular, we may select a

compact set E ⊂ G such that L n(E) ≥ 1
2
L n(G). For the record, since (σ/27)r0 ≤ r1,

L n(E) ≥ 1

4
L n(Bn(x1, r1)) ≥

1

4

( σ
27

)n
L n(Bn(x0, r0)) &n,Cf

L n(Bn(x0, r0)) (4.16)

and
diamE &n diamBn(x1, r1)) &n,Cf

diamBn(x0, r0). (4.17)

Now, on one hand, H̃f (B
N(x1, 27r1)) ≤ ρ ≤ τ∗. Hence f |Bn(x1,9r1) is ε∗-almost affine over

Bn(x1, 9r1) by Theorem 4.8. On the other hand, we also have H̃f (B
N(x1, 3r1)) ≤ ρ ≤ ε∗.

Thus, by Theorem 4.9, there exists a quasisymmetric map F : Rn → RN such that F |E = f |E ,

H̃F (Rn) ≤ ε ≤ min{1, δ∗}, (4.18)

F is δ∗-almost affine over Rn, (4.19)

diamF (Bn(x1, r1)) ∼n,N diam f(Bn(x1, r1)), and (4.20)∫ ∞

0

βF (Rn)(F (x), s)
2ds

s
.n,N Cf + ε2 . Cf for all x ∈ Rn. (4.21)

By (4.18), (4.19), and Lemma 4.7, we conclude that F (Rn) is ((1 + ε)δ,∞)-Reifenberg flat,
where (1 + ε)δ ≤ 2δ ≤ δ0. Also by (4.21) and Lemma 3.7, for all x ∈ Rn and s > 0,

sup
y∈F (Rn)∩BN (F (x),10s)

∞∑
k=0

βctr
F (Rn)(y, 10

−ks)2 .n,N Cf .

Therefore, by Corollary 3.5, there exist L = L(n,N,Cf ) > 1 (with L → 1 as Cf → 0 by
Remark 3.6) and an L2-bi-Lipschitz map g : RN → RN such that g(F (Rn)) = Rn.
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E

F f(Rn)

F (Rn)

h

g

h(E)Rn Rn

Figure 4.1. The light gray set represents the quasiplane f(Rn). We extend f |E
to an almost affine map F : Rn → RN , whose image F (Rn) (the dark gray set) is
mapped onto Rn by a bi-Lipschitz map g : RN → RN . The black set represents
E and its images F (E) = f(E) and h(E) = g(F (E)) = g(f(E)).

We now estimate the n-dimensional Hausdorff measure of f(E) = F (E). It is at this point
that the restriction n ≥ 2 enters the discussion. First note thatF is quasisymmetric with a control
function depending only on n andN , by (4.18) and Corollary 2.3. Thus, since g has bi-Lipschitz
constant depending on at most on n, N , and Cf , the composition h = g ◦ F : Rn → Rn is η-
quasisymmetric for some control function η depending only on n, N , and Cf (see Figure 4.1).
Hence h(Bn(x1, r1)) ⊂ Rn has bounded eccentricity (depending only n, N , and Cf ) and

(diamh(Bn(x1, r1)))
n ∼n,N,Cf

L n(h(Bn(x1, r1))).

Pick any closed cube Q ⊂ Rn such that Bn(x1, r1) ⊂ Q and L n(Bn(x1, r1)) ∼n L n(Q).
Since n ≥ 2 and h is quasiconformal with maximal dilatation Kh(Rn) ≤ η(1)n−1 depending
only on n, N and Cf , by Corollary 2.12 there exists q = q(n,N,Cf ) > 0 such that

L n(h(E))

(diamh(Bn(x1, r1)))n
∼n,N,Cf

L n(h(E))

L n(h(Bn(x1, r1)))

≥ L n(h(E))

L n(h(Q))
≥ 1

2
exp

(
−qL

n(Q)

L n(E)

)
&n,N,Cf

1.

Since g bi-Lipschitz with constant depending only on n, N and Cf , it follows that
H n(F (E))

(diamF (Bn(x1, r1)))
n &n,N,Cf

1. (4.22)

Thus, by (4.20) and (4.22), we obtain

H n(f(E)) = H n(F (E)) &n,N,Cf
(diam f(Bn(x1, r1)))

n . (4.23)

We would like to replace diam f(Bn(x1, r1)) in (4.23) by diam f(Bn(x0, r0)). To that end, note
that the restriction f |Rn is quasisymmetric with a control function depending only on n, N , and
H := Hf (Rn) by Corollary 2.3. Thus, by (4.17) and Lemma 2.1,

diam f(Bn(x1, r1)) &n,N,Cf ,H diam f(Bn(x0, r0)). (4.24)
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Therefore,
H n(f(E)) &n,N,Cf ,H (diam f(Bn(x0, r0)))

n . (4.25)
We have argued that for all x0 ∈ Rn and r0 > 0 there exist a closed set E ⊂ Bn(x0, r0) and a
L(n,N,Cf )-bi-Lipschitz map g : f(E) → Rn (with L→ 1 as Cf → 0) such that (4.25) hold.

To finish the proof of the theorem, we now show that f(Rn) has big pieces of bi-Lipschitz
images of Rn. Let ξ ∈ f(Rn) and s > 0 be given. Put x = f−1(ξ) ∈ Rn and set

r = max
{
t : f(Bn(x, t)) ⊂ BN(ξ, s)

}
.

Since r is maximal, there exists y ∈ Bn(x, r) such that |f(y)− f(x)| = s. As we argued above,
there exists E ⊂ Bn(x, r) such that f(E) ⊂ f(Rn) ∩ BN(ξ, s) is L(n,N,Cf )-bi-Lipschitz
equivalent to a subset of Rn and

H n(f(E)) &n,N,Cf ,H (diam f(Bn(x, r)))n ≥ |f(y)− f(x)|n ≥ sn.

Therefore, since ξ ∈ f(Rn) and s > 0 were arbitrary, f(Rn) has big pieces of bi-Lipschitz
images of Rn with BPBI constants depending on at most n, N , Cf , and HF (Rn). �

5. Distortion of beta numbers by quasisymmetric maps

In this section, we examine the distortion of beta numbers by weakly quasisymmetric maps.
Our primary goal is to prove Lemma 4.2, which for convenience we now restate.

Lemma 5.1. Suppose that 1 ≤ n ≤ N − 1. Let V be an n-dimensional plane in RN , let v ∈ V

and let e be a unit vector in RN . For any topological embedding f : BN(v, 2r) → RN ,

βf(V )

(
f(v),

1

2
|f(v + re)− f(v)|

)
≤ 72NH̃f (B

N(v, 2r)).

Proof of Lemma 4.2 / Lemma 5.1. Without loss of generality, by applying a translation, rotation,
and dilation in the domain, and a dilation in the image, we may assume that 1 ≤ n ≤ N − 1,
V = Rn, v = 0 and r = 1, and f : BN(0, 2) → RN is an embedding such that |f(e)−f(0)| = 1

for some unit vector e. Also, by applying a translation in the image, we may assume that
N∑
i=1

f(ei) + f(−ei) = 0.

Fix 0 < δ ≤ 1/4 to be specified later, ultimately depending only on N . If H̃f (B
N(0, 2)) > δ,

then βf(Rn)(f(0), 1/2) ≤ 1 ≤ (1/δ)H̃f (B
N(0, 2)) trivially. Thus, to continue, we assume that

H̃f (B
N(0, 2)) =: ε ≤ δ.

Because |f(e) − f(0)| = 1, f is a topological embedding, and H̃f (B
N(0, 1)) ≤ ε ≤ 1/4, it

follows that
1

1 + ε
≤ |f(e′)− f(0)| ≤ 1 + ε for every unit vector e′, (5.1)

BN

(
f(0),

1

1 + ε

)
⊂ f(BN(0, 1)) ⊂ BN(f(0), 1 + ε), (5.2)
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and
2

1 + ε
≤ diam f(BN(0, 1)) ≤ 2(1 + ε) ≤ 5/2. (5.3)

For all 1 ≤ i ≤ N , put

yi :=
f(ei) + f(−ei)

2
and zi :=

f(ei)− f(−ei)
2

.

We note that yi ± zi = f(±ei). Let A : RN → RN be the unique affine map such that

A(0) =
1

N

N∑
i=1

yi = 0, A(ei) = zi for all 1 ≤ i ≤ N. (5.4)

We will show thatA(Rn) is ann-dimensional plane and useA(Rn) to estimate βf(Rn)(f(0), 1/2).
To start, we show that the vectorsA(ei) andA(ej) are almost orthogonal for all 1 ≤ i, j ≤ N ,

i ̸= j. Let x ∈ e⊥i ∩BN(0, 1). Since H̃f (B
N(0, 1)) ≤ ε and |x− ei| = |x− (−ei)|, we have

1

1 + ε
≤ |f(x)− f(ei)|

|f(x)− f(−ei)|
≤ 1 + ε.

Hence, by the polarization identity,

|⟨zi, f(x)− yi⟩| =
1

4

∣∣|f(x)− f(−ei)|2 − |f(x)− f(ei)|2
∣∣

≤ 1

4
((1 + ε)2 − 1)|f(x)− f(ei)| ≤

45

32
ε ≤ 1.5ε,

where in the last line we used the estimates ε ≤ 1/4 and diam f(BN(0, 1)) ≤ 5/2. In particular,
for all 1 ≤ j ≤ N , j ̸= i, we have

|⟨zi, f(±ej)− yi⟩| ≤ 1.5ε.

Hence |⟨zi, yj − yi⟩| ≤ 1.5ε, as well. Averaging over all 1 ≤ j ≤ N , we obtain

|⟨zi, A(0)− yi⟩| ≤ 1.5ε.

Thus, for all x ∈ e⊥i ∩BN(0, 1),

|⟨zi, f(x)− A(0)⟩| ≤ |⟨zi, f(x)− yi⟩|+ |⟨zi, A(0)− yi⟩| ≤ 3ε.

Recall that A(0) = 0, by assumption. Therefore,

|⟨A(ei), f(x)⟩| = |⟨zi, f(x)⟩| ≤ 3ε for all x ∈ e⊥i ∩BN(0, 1), (5.5)

and

|⟨A(ei), A(ej)⟩| ≤
|⟨A(ei), f(ej)⟩|+ |⟨A(ei), f(−ej)⟩|

2
≤ 3ε for all i ̸= j. (5.6)

That is, the vectors A(ei) and A(ej) are almost orthogonal for all 1 ≤ i ≤ j ≤ N , i ̸= j.
Next, we claim that

(1− ε)2 ≤ |A(ei)| ≤ 1 + ε for all 1 ≤ i ≤ N. (5.7)
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To see this, fix 1 ≤ i ≤ N . For the upper bound, recall that diam f(BN(0, 1)) ≤ 1 + ε. Hence

|A(ei)| =
|f(ei)− f(−ei)|

2
≤ 1 + ε.

For the lower bound, write r± = |f(0)− f(±ei)|. Since H̃f (B
N(0, 2)) ≤ ε, we know that

|f(y)− f(±ei)| ≥ (1 + ε)−1r± for all y ∈ ∂BN(±ei, 1).

Hence f(BN(±ei, 1)) ⊇ BN(f(±ei), (1 + ε)−1r±) =: BN
± , because f is a homeomorphism

onto its image. Moreover,

f(BN(ei, 1)) ∩ f(BN(−ei, 1)) = {f(0)},

so the balls BN
+ and BN

− intersect in exactly one point. It follows that

|f(ei)− f(−ei)| ≥ (1 + ε)−1(r+ + r−).

Recalling that r± ≥ (1 + ε)−1 by (5.1), we conclude that

|A(ei)| =
|f(ei)− f(−ei)|

2
≥ (1 + ε)−1(r+ + r−)

2
≥ (1 + ε)−2 ≥ (1− ε)2,

where the last inequality holds, since 1 ≥ (1− ε2)2 = (1− ε)2(1 + ε)2. Thus, (5.7) holds.
We now examine how A distorts the length of arbitrary vectors. Let v ∈ RN , and expand

v =
∑N

i=1 viei. If |v| = 1, then

∣∣|A(v)|2 − 1
∣∣ = ∣∣∣∣∣∑

i̸=j

⟨A(ei), A(ej)⟩vivj +
N∑
i=1

(|A(ei)|2 − 1)v2i

∣∣∣∣∣
≤ 3εN + (1− (1− ε)4) ≤ 3Nε+ 4ε+ 4ε3 ≤ (3N + 4.25)ε ≤ 6Nδ

by (5.6) and (5.7), and the bounds ε ≤ δ ≤ 1/4 and 2 ≤ N . By homogeneity, it follows that
√
1− 6Nδ ≤ |A(v)|

|v|
≤

√
1 + 6Nδ for all v ∈ RN .

In particular, stipulating that 6Nδ = 3/4 (that is, δ = 1/8N ),

1

2
≤ |A(v)|

|v|
≤

√
7

2
for all v ∈ RN . (5.8)

Therefore, A : RN → RN is invertible and A(Rn) is an n-dimensional plane in RN .
Let ξ ∈ f(Rn) ∩ BN(f(0), 1/2). Then ξ = f(x) for some x ∈ Bn(0, 1) by (5.2). Since A is

invertible, we can find a unique y ∈ RN such that A(y) = f(x). Then, by (5.4) and (5.8),

|y| ≤ 2|A(y)| = 2|f(x)− A(0)| = 2

N

N∑
i=1

∣∣∣∣f(x)− f(ei) + f(−ei)
2

∣∣∣∣
≤ 1

N

N∑
i=1

(|f(x)− f(ei)|+ |f(x)− f(−ei)|) ≤ 2 diam f(BN(0, 1)) ≤ 5.
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Write y = u+vwhere u ∈ Rn and v ∈ (Rn)⊥, and expand u =
∑n

i=1 uiei and v =
∑N

j=n+1 vjej .
Then

|f(x)− A(u)|2 = ⟨f(x)− A(u), f(x)− A(u)⟩ = ⟨f(x)− A(u), A(v)⟩

=
N∑

j=n+1

⟨f(x), A(ej)⟩vj −
n∑

i=1

N∑
j=n+1

⟨A(ei), A(ej)⟩uivj.

Thus, by (5.5) and (5.6),

|f(x)− A(u)|2 ≤
N∑

i=n+1

3ε|vi|+
n∑

i=1

N∑
j=n+1

3ε|ui||vj| ≤ 3ε(N − n)1/2|v|
(
1 + n1/2|u|

)
.

Note that |v| ≤ 2|A(v)| = 2|f(x)− A(u)|, |u| ≤ |y| ≤ 5, and 1 ≤ n1/2. Hence

dist(ξ, A(Rn)) ≤ |f(x)− A(u)| ≤ 36Nε for all ξ ∈ f(Rn) ∩BN(f(0), 1/2).

Therefore, βf(Rn)(f(0), 1/2) ≤ 72Nε = 72NH̃f (B
N(0, 2)). �

Our next task is to derive Corollary 4.3, which for convenience we now restate.

Corollary 5.2. Suppose that 1 ≤ n ≤ N − 1 and H ≥ 1. There is C = C(N,H) > 1 such that
if z ∈ Rn, t > 0, f : BN

◦ (z, 2t) → RN is quasiconformal, and Hf (B
N(z, t)) ≤ H , then∫ diam f(BN (z,t))/C

0

βf(Rn)(f(z), s)
2ds

s
≤ C

∫ t

0

H̃f (B
N(z, s))2

ds

s
. (5.9)

Proof of Corollary 4.3 / Corollary 5.2. Let 1 ≤ n ≤ N − 1 and H ≥ 1 be given. Assume that
f : BN

◦ (z, 2t) → RN is quasiconformal and Hf (B
N(z, t)) ≤ H for some z ∈ Rn and t > 0.

Then K := Kf (B
N
◦ (z, t)) ≤ HN−1 and the inverse g = f |−1

BN
◦ (z,t)

: f(BN
◦ (z, t)) → BN

◦ (z, t) is
also a K-quasiconformal map. Set α := K1/(1−N) ≤ 1/H and

M := sup
|w−z|=t

|f(w)− f(z)|.

We remark that M ≤ diam f(BN(z, t)) ≤ 2M , since ∂f(BN(z, t)) = f(∂BN(z, t)). Because
f is weakly H-quasisymmetric, f(BN(z, t)) ⊇ BN(f(z),M/H). By Theorem 2.10, there
exists a constant A = A(N,K) = A(N,H) ≥ 1 such that

|f(x)− f(y)| ≤ AM
∣∣∣x
t
− y

t

∣∣∣α for all x, y ∈ BN(z, t/2).

In particular,

|f(x)− f(z)| ≤ AM
(r
t

)α
≤ M

2H
for all x ∈ BN(z, r),

for all r > 0 such that
r ≤ t

(2AH)1/α
≤ t

2
. (5.10)

Let r > 0 satisfy (5.10). By Lemma 5.1,

βf(Rn)

(
f(z),

1

2
|f(z + re1)− f(z)|

)
.N H̃f (B

N(z, 2r)).
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Let us bound r from above by a power of u := |f(z + re1) − f(z)|/2. Write ξ = f(z + re1)

and ζ = f(z). Then ξ ∈ BN(ζ,M/2H), since r satisfies (5.10). By Theorem 2.10,

r = |g(ξ)− g(ζ)| ≤ At

∣∣∣∣ ξ

M/H
− ζ

M/H

∣∣∣∣α = At

(
2Hu

M

)α

.

Thus, since H̃f (B
N(z, s)) is increasing in s, we have

βf(Rn) (f(z), u) .N H̃f

(
BN

(
z, 2At

(
2Hu

M

)α))
= H̃f

(
BN (z,Qt(u/M)α)

)
, (5.11)

where Q := 2A(2H)α depends only on N and H . Note that (5.11) holds for all u > 0 such that

At

(
2Hu

M

)α

≤ t

(2AH)1/α
, (5.12)

because (5.12) ensures that u comes from some r satisfying (5.10).
Hence, for all a > 0 sufficiently small,∫ a

0

βf(Rn)(f(z), u)
2 du

u
.N

∫ a

0

H̃f (B
N(z,Qt(u/M)α))2

du

u

=
1

α

∫ Qt(a/M)α

0

H̃f (B
N(z, s))2

ds

s
,

where the equality follows from the change of variables s = Qt(u/M)α, ds/s = α du/u. Taking
a to be of the form a = diam f(BN(z, t))/C with C large, we obtain∫ diam f(BN (z,t))/C

0

βf(Rn)(f(z), s)
2 ds

s
.N,K

∫ Q(2/C)αt

0

H̃f (B
N(z, s))2

ds

s
.

Therefore, (5.9) holds for C > 1 sufficiently large depending only on N and H . �

6. Estimates for compatible affine maps and almost affine maps

To start the section, we record useful estimates for compatible affine maps (Lemma 6.1) and
for almost affine maps (Lemma 6.2). Next we show that almost affine maps with small constant
are Hölder continuous (Lemma 6.3). In Lemma 6.4, we make estimates on the diameter, inradius
and local flatness of the images of balls under almost affine maps. To end the section, we give a
pair of lemmas (Lemmas 6.6 and 6.8), which enable us to replace an arbitrary family compatible
affine maps approximating an almost affine map with a family of compatible affine maps that
satisfy additional nice properties.

For all ε > 0, define Tε : [1,∞) → [1,∞) by

Tε(t) = (2 log2(t) + 1)t2 log2(1+ε) for all t ≥ 1. (6.1)

Observe that Tε(t) is increasing in ε and t; that is, Tε1(t1) ≤ Tε2(t2) for all 0 < ε1 ≤ ε2 and
1 ≤ t1 ≤ t2. For all x, y ∈ Rn and r, s > 0, define

τ(x, r, y, s) :=
max{r, s, 2|x− y|}

min{r, s}
. (6.2)
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Lemma 6.1 (Estimates for compatible families of affine maps). Let E ⊂ Rn and ε > 0. If A is
an ε-compatible family of affine maps over E (see §4.2), then for all x, y ∈ E and r, s > 0,

∥A′
x,r − A′

y,s∥ ≤ Tε(τ) εmin{∥A′
x,r∥, ∥A′

y,s∥} (6.3)

and
max{∥A′

x,r∥, ∥A′
y,s∥} ≤ (1 + Tε(τ)ε)min{∥A′

x,r∥, ∥A′
y,s∥} (6.4)

where τ = τ(x, r, y, s). In particular, if ε ≤ a and τ ≤ a for some a ≥ 1, then

∥A′
x,r − A′

y,s∥ .a εmin{∥A′
x,r∥, ∥A′

y,s∥} (6.5)

and
max{∥A′

x,r∥, ∥A′
y,s∥} .a min{∥A′

x,r∥, ∥A′
y,s∥}. (6.6)

Proof. Suppose that A is an ε-compatible family of affine maps over E ⊂ Rn. We shall first
establish an auxiliary estimate:

∥A′
x,r − A′

x,2kr∥ ≤
(
(1 + ε)k − 1

)
min{∥A′

x,r∥, ∥A′
x,2kr∥} for all x ∈ E and k ≥ 0. (6.7)

Fix x ∈ E. For all k ≥ 0, ∥A′
x,2kr

− A′
x,2k+1r

∥ ≤ εmin{∥A′
2kr

∥, ∥A′
2k+1r

∥}, because A is
ε-compatible. Hence, by the triangle inequality,

max{∥A′
2kr∥, ∥A

′
2k+1r∥} ≤ (1 + ε)min{∥A′

x,2kr∥, ∥A
′
x,2k+1r∥}.

By induction, it follows that (1 + ε)−k∥A′
x,r∥ ≤ ∥A′

x,2kr
∥ ≤ (1 + ε)k∥A′

x,r∥ for all integers
k ≥ 0. We now estimate ∥A′

x,r − A′
x,2kr

∥. Since this expression vanishes trivially when k = 0,
we may assume that k ≥ 1. Expanding the difference as a telescoping sum yields

∥A′
x,r − A′

x,2kr∥ ≤
k−1∑
j=0

∥A′
x,2jr − A′

x,2j+1r∥ ≤
k−1∑
j=0

ε(1 + ε)j∥A′
x,r∥

= ε

(
(1 + ε)k − 1

(1 + ε)− 1

)
∥A′

x,r∥ =
(
(1 + ε)k − 1

)
∥A′

x,r∥.

(6.8)

Similarly, telescoping in the other direction,

∥A′
x,2kr − A′

x,r∥ ≤
k−1∑
l=0

∥A′
x,2k−lr − A′

x,2k−l−1r∥ ≤
k−1∑
l=0

ε(1 + ε)l∥A′
x,2kr∥

= ε

(
(1 + ε)k − 1

(1 + ε)− 1

)
∥A′

x,2kr∥ =
(
(1 + ε)k − 1

)
∥A′

x,2kr∥.

(6.9)

Therefore, (6.7) holds by (6.8) or (6.9), according to whether ∥A′
x,r∥ or ∥A′

x,2kr
∥ is smaller,

respectively.
We now aim to prove (6.3). Fix x, y ∈ E and r, s > 0. Without loss of generality, we assume

that r ≤ s. Define k ≥ 0 to be the unique integer such that 2kr ≤ s < 2k+1r, and let l ≥ 0 be
the smallest nonnegative integer such that |x− y| < 2ls. By two applications of (6.7):

∥A′
x,r − A′

x,2k+lr∥ ≤
(
(1 + ε)k+l − 1

)
min{∥A′

x,r∥, ∥A′
x,2k+lr∥}
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and
∥A′

y,s − A′
y,2ls∥ ≤

(
(1 + ε)l − 1

)
min{∥A′

y,s∥, ∥A′
y,2ls∥}.

Also, since A is ε-compatible, |x− y| < 2ls = max{2k+lr, 2ls} and 1
2
≤ (2k+lr)/(2ls) < 1,

∥A′
x,2k+lr − A′

y,2ls∥ ≤ εmin{∥A′
x,2k+lr∥, ∥A

′
y,2ls∥}.

By the triangle inequality, it follows that

max{∥A′
x,2k+lr∥, ∥A

′
y,2ls∥} ≤ (1 + ε)min{∥A′

x,2k+lr∥, ∥A
′
y,2ls∥}.

Combining the previous four displayed equations yields

∥A′
x,r − A′

y,s∥ ≤
[
(2 + ε)

(
(1 + ε)k+l − 1

)
+ ε
]
min{∥A′

x,2k+lr∥, ∥A
′
y,2ls∥}.

Next, by (6.7) and the triangle inequality, we have ∥A′
x,2k+lr

∥ ≤ (1+ε)k+l∥A′
x,r∥ and ∥A′

y,2ls
∥ ≤

(1 + ε)l∥A′
y,s∥ ≤ (1 + ε)k+l∥A′

y,s∥. Hence

∥A′
x,r − A′

y,s∥ ≤ (1 + ε)k+l
[
(2 + ε)

(
(1 + ε)k+l − 1

)
+ ε
]
min{∥A′

x,r∥, ∥A′
y,s∥}.

Thus, invoking the mean value theorem (for the function t 7→ tk+l between t = 1 and t = 1+ ε)
and noting that (2 + ε)/(1 + ε) ≤ 2 for all ε > 0, we conclude that

∥A′
x,r − A′

y,s∥ ≤ (1 + ε)k+l
[
(2 + ε)ε(k + l)(1 + ε)k+l−1 + ε

]
min{∥A′

x,r∥, ∥A′
y,s∥}

≤ (1 + ε)2(k+l) [2(k + l) + 1] εmin{∥A′
x,r∥, ∥A′

y,s∥}.

Examining the definitions of k and l, we see that k ≤ log2(s/r), l = 0 if |x − y| < s, and
l ≤ log2(2|x− y|/s) if |x− y| ≥ s. Either way, k + l ≤ log2(max{s, 2|x− y|}/r) =: log2(τ)

and (1 + ε)2(k+l) ≤ (1 + ε)2 log2(τ) = τ 2 log2(1+ε). This establishes (6.3) and (6.4) follows from
the triangle inequality

To finish, suppose that ε ≤ a and τ ≤ a for some a ≥ 1. Then, by (6.3),

∥A′
x,r − A′

y,s∥ ≤ (2 log2(a) + 1) a2 log2(1+a)εmin{∥A′
x,r∥, ∥A′

y,s∥}.

This establishes (6.5) and (6.6) follows from the triangle inequality. �

Lemma 6.2 (Estimate for affine maps approximating an almost affine map). Let (f, E,A) be
ε-almost affine for some E ⊂ Rn and ε > 0 (see §4.2). Let x, y ∈ E, let r, s > 0 and let a ≥ 1.
If ε ≤ a, |x− y| ≤ amax{r, s} and dist(z, {x, y}) ≤ amax{r, s} for some z ∈ Rn, then

|Ax,r(z)− Ay,s(z)| .a Tε(τ) εmin{∥A′
x,r∥, ∥A′

y,s∥}max{r, s}, (6.10)

where τ = τ(x, r, y, s). In particular, if in addition τ ≤ a, then

|Ax,r(z)− Ay,s(z)| .a εmin{∥A′
x,r∥, ∥A′

y,s∥}max{r, s}, (6.11)

Proof. Let E ⊂ Rn, let ε > 0, and let (f, E,A) be ε-almost affine. Let x, y ∈ E and r, s > 0.
Without loss of generality, assume that r ≤ s. Let a ≥ 1 and z ∈ Rn be given, and assume that
ε ≤ a, |x− y| ≤ as, and dist(z, {x, y}) ≤ as. By the triangle inequality,

|Ax,r(z)− Ay,s(z)| ≤ |Ax,r(z)− Ay,as(z)|+ |Ay,as(z)− Ay,s(z)|.
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We estimate the two terms separately. First, expanding Ay,as(z) = A′
y,as(z − y) + Ay,as(y) and

Ay,s(z) = A′
y,s(z − y) + Ay,s(y), we obtain

|Ay,as(z)− Ay,s(z)| ≤ |A′
y,as(z − y)− A′

y,s(z − y)|+ |Ay,as(y)− f(y)|+ |f(y)− Ay,s(y)|
≤ ∥A′

y,as − A′
y,s∥|z − y|+ ε∥A′

y,as∥as+ ε∥A′
y,s∥s

.a

(
∥A′

y,as − A′
y,s∥+ ε∥A′

y,as∥+ ε∥A′
y,s∥
)
s,

since y ∈ Bn(y, as) ∩ Bn(y, s) and (f, E,A) is ε-almost affine. But ∥A′
y,as∥ ∼a ∥A′

y,s∥ and
∥A′

y,as − A′
y,s∥ .a ε∥A′

y,s∥ by (6.5) and (6.6), since ε ≤ a and τ(y, as, y, s) = a. Hence

|Ay,as(z)− Ay,s(z)| .a ε∥A′
y,s∥s. (6.12)

Similarly, expanding Ax,r(z) = A′
x,r(z − x) +Ax,r(x) and Ay,as(z) = A′

y,as(z − x) +Ay,as(x),

|Ax,r(z)− Ay,as(z)| ≤ |A′
x,r(z − x)− A′

y,as(z − x)|+ |Ax,r(x)− f(x)|+ |f(x)− Ay,as(x)|
≤ ∥A′

x,r − A′
y,as∥|z − x|+ ε∥A′

x,r∥r + ε∥A′
y,as∥as

.a

(
∥A′

x,r − A′
y,as∥+ ε∥A′

x,r∥+ ε∥A′
y,as∥

)
s,

because x ∈ Bn(x, r) ∩ Bn(y, as) and (f, E,A) is ε-almost affine. By the triangle inequality
and the estimates for ∥A′

y,as − A′
y,s∥, ∥A′

y,as∥ and ∥A′
y,s∥ from above, it follows that

|Ax,r(z)− Ay,as(z)| .a

(
∥A′

x,r − A′
y,s∥+ ε∥A′

x,r∥+ ε∥A′
y,s∥
)
s. (6.13)

Now, by Lemma 6.1 (6.3) and (6.4), writing T := Tε(τ), τ = τ(x, r, y, s) we have

∥A′
x,r − A′

y,s∥ ≤ Tεmin{∥A′
x,r∥, ∥A′

y,s∥} (6.14)

and

max{∥A′
x,r∥, ∥A′

y,s∥} ≤ (1 + Tε) min{∥A′
x,r∥, ∥A′

y,s∥} .a T min{∥A′
x,r∥, ∥A′

y,s∥}, (6.15)

because ε ≤ a and 1 ≤ T . Thus, put together, (6.13), (6.14), and (6.15) give

|Ax,r(z)− Ay,as(z)| .a Tεmin{∥A′
x,r∥, ∥A′

y,s∥}s. (6.16)

Therefore, combining (6.12), (6.15) and (6.16), we obtain (6.10). If it also happens that τ ≤ a,
then T .a 1 and (6.11) follows immediately from (6.10). �

Lemma 6.3 (Hölder continuity). There exists an absolute constant ε̂ > 0 such that if (f, E,A)

is ε-almost affine for some ε < ε̂, then f |E is locally α-Hölder continuous for α = α(ε) < 1

such that α ↑ 1 as ε ↓ 0. More precisely, if θ = 1− 2 log2(1 + ε) ∈ (0, 1), then

|f(x)−f(y)| ≤ 4

θ log(2)

(
|x− y|
r0

)(1−ε)θ

∥A′
x0,r0

∥r0 for all x, y ∈ E∩Bn(x0, r0/2) (6.17)

for all x0 ∈ E and r0 > 0.
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Proof. Set ε̂ =
√
2− 1. Let ε < ε̂, so that 1− 2 log2(1 + ε) =: θ > 0. Suppose that (f, E,A)

is ε-almost affine. Let x0 ∈ E and r0 > 0 be given. Fix x, y ∈ E ∩ Bn(x0, r0/2) so that
|x− y| = r ≤ r0. On one hand, since (f, E,A) is ε-almost affine,

|f(x)− f(y)| ≤ |Ax,r(x)− Ax,r(y)|+ |f(x)− Ax,r(x)|+ |f(y)− Ax,r(y)|
≤ (1 + 2ε)∥A′

x,r∥r ≤ 2∥A′
x,r∥r.

On the other hand, since τ(x, r, x0, r0) ≤ r0/r, by Lemma 6.1 (6.4),

∥A′
x,r∥ ≤ ∥A′

x0,r0
∥+

(
2 log2

(r0
r

)
+ 1
)(r0

r

)2 log2(1+ε)

ε∥A′
x0,r0

∥

≤ ∥A′
x0,r0

∥+
(

2

εθ log(2)

((r0
r

)εθ
− 1

)
+ 1

)(r0
r

)2 log2(1+ε)

ε∥A′
x0,r0

∥

≤ 2

θ log(2)

(r0
r

)2 log2(1+ε)+εθ

∥A′
x0,r0

∥ =
2

θ log(2)

(
r

r0

)(1−ε)θ

∥A′
x0,r0

∥
(r0
r

)
,

where to pass between the first and second lines we used the inequality

log2(t) ≤
tδ − 1

δ log(2)
for all t ≥ 1 and δ > 0.

(That is, log(t) ≤ t − 1 for all t ≥ 1.) Combining the displayed equations immediately gives
(6.17). Therefore, the map f |E is locally α-Hölder continuous, where α = (1 − ε)θ < 1 only
depends ε. Lastly, note that (1− ε)θ ↑ 1 as ε ↓ 0. �

Lemma 6.4. Let (f,Bn(x, r),A) be ε-almost affine for some x ∈ Rn and r > 0. If λn(A′
x,r) ≤

Hλ1(A
′
x,r) and H(t+ 2ε) ≤ 1, then

∥A′
x,r∥r ≤ diam f(Bn(x, r)) ≤ 3∥A′

x,r∥r, (6.18)

t∥A′
x,r∥r ≤ |f(x)− f(y)| ≤ 2∥A′

x,r∥r for all y ∈ ∂Bn(x, r), (6.19)
and

θf(Bn(x,r))

(
f(x),

1

3H
diam f(B(x, r))

)
≤ 6εH. (6.20)

Proof. Fix a parameter 0 < t < 1. Suppose (f,Bn(x, r),A) is ε-almost affine for some x ∈ Rn,
r > 0 and ε > 0. Furthermore, suppose λn(A′

x,r) ≤ Hλ1(A
′
x,r) for some 1 ≤ H <∞ such that

H(t+ 2ε) ≤ 1. We will compare f(Bn(x, r)) ⊂ RN with Ax,r(B
n(x, r)) ⊂ RN .

To start, observe that
diamAx,r(B

n(x, r)) = 2∥A′
x,r∥r

and
inf

|y−x|=r
|Ax,r(y)− Ax,r(x)| = λ1(A

′
x,r)r ≥ H−1∥A′

x,r∥r, (6.21)

since Ax,r is affine. Because (f,Bn(x, r),A) is ε-almost affine, it follows that

|f(y)− f(z)| ≤ |Ax,r(y)− Ax,r(z)|+ |f(y)− Ax,r(y)|+ |f(z)− Ax,r(z)|
≤ (2 + 2ε)∥A′

x,r∥r
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for all y, z ∈ Bn(x, r). Hence diam f(Bn(x, r)) ≤ (2 + 2ε)∥A′
x,r∥r. Similarly, choosing

y0, z0 ∈ Bn(x, r) such that |Ax,r(y0)− Ax,r(z0)| = diamAx,r(B
n(x, r)), we see

|f(y0)− f(z0)| ≥ |Ax,r(y0)− Ax,r(z0)| − |f(y0)− Ax,r(y0)| − |f(z0)− Ax,r(z0)|
≥ (2− 2ε)∥A′

x,r∥r.

Hence diam f(Bn(x, r)) ≥ (2− 2ε)∥A′
x,r∥r. A parallel argument gives, for any |y − x| = r,

|f(y)− f(x)| ≤ |Ax,r(y)− Ax,r(x)|+ |f(y)− Ax,r(y)|+ |f(x)− Ax,r(x)|
≤ (1 + 2ε)∥A′

x,r∥r

and
|f(y)− f(x)| ≥ |Ax,r(y)− Ax,r(x)| − |f(y)− Ax,r(y)| − |f(x)− Ax,r(x)|

≥ (H−1 − 2ε)∥A′
x,r∥r.

The inequalities (6.18) and (6.19) now follow, since 2ε ≤ 1 andH−1−2ε ≥ t by our assumption
that H(2ε+ t) ≤ 1.

To continue, we estimate the local flatness θf(Bn(x,r))(f(x), s) at scale s = H−1∥A′
x,r∥r. Let

V be the n-dimensional hyperplane containing f(x) given by

V = f(x)− Ax,r(x) + Ax,r(Rn).

On one hand, if w ∈ f(Bn(x, r)) ∩BN(f(x), s), say w = f(z) for some z ∈ Bn(x, r), then

dist(w, V ) ≤ |f(x)− Ax,r(x) + Ax,r(z)− w|
≤ |f(x)− Ax,r(x)|+ |Ax,r(z)− f(z)| ≤ 2ε∥A′

x,r∥r = 2εHs.

On the other hand, suppose that v ∈ V ∩ BN(f(x), s), say v = f(x) − Ax,r(x) + Ax,r(z) for
some z ∈ Rn. Since |Ax,r(z) − Ax,r(x)| = |f(x) − v| ≤ s = H−1∥A′

x,r∥r, we know that
z ∈ Bn(x, r) by (6.21). Thus

dist(v, f(Bn(x, r))) ≤ |v − f(z)| ≤ |f(x)− Ax,r(x)|+ |Ax,r(z)− f(z)|
≤ 2ε∥A′

x,r∥r = 2εHs.

We conclude that θf(Bn(x,r))(f(x), s) ≤ 2εH . Finally, shrinking scales using (3.1) and (6.18)
yields (6.20). �

Definition 6.5. Let E ⊂ Rn be bounded. A family A of affine maps over E is stable on large
scales if there exists x∗ ∈ E such that Ax,r = Ax∗,diamE for all x ∈ E and for all r > diamE.

Lemma 6.6. Let E ⊂ X ⊂ Rn with E bounded. If f : X → Rn is ε-almost affine over E for
some ε > 0, then (f, E,A) is ε-almost affine for some A that is stable at large scales. In fact,
given any B such that (f, E,B) is ε-almost affine and any x∗ ∈ E, (f, E,A) is ε-almost affine
for the family A defined by

Ax,r =

{
Bx,r if 0 < r ≤ diamE,

Bx∗,diamE if r > diamE,
for all x ∈ E and r > 0. (6.22)
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Proof. Let E ⊂ Rn be bounded, suppose that (f, E,B) is ε-almost affine, and let x∗ ∈ E be
given. DefineA by (6.22). ThenA is stable on large scales. We will show thatA is ε-compatible
and (f, E,A) is ε-almost affine.

To show thatA is ε-compatible, suppose that x, y ∈ E and r, s > 0 satisfy |x−y| ≤ max{r, s}
and 1/2 ≤ r/s ≤ 2. We start with two easy cases. On one hand, if r, s ≤ diamE, then

∥A′
x,r − A′

y,s∥ ≤ εmin{∥A′
x,r∥, ∥A′

y,s∥}, (6.23)

since B is ε-compatible and Ax,r = Bx,r and Ay,s = By,s. On the other hand, if r, s > diamE,
then (6.23) holds since Ax,r = Bx∗,diamE = Ay,r. Next we look at the case of mixed scales.
Assume without loss of generality that r > diamE and s ≤ diamE so that Ax,r = Bx∗,diamE

and Ay,s = By,s. Note that diamE ≥ s ≥ 1
2
r > 1

2
diamE. Hence, 1

2
≤ (diamE)/s ≤ 2 and

|x∗− y| ≤ diamE = max(diamE, s). Thus, in this case (6.23) holds, since B is ε-compatible.
Therefore, A is ε-compatible.

To check that (f, E,A) is ε-almost affine, let x ∈ E and r > 0. If r ≤ diamE, then
Ax,r = Bx,r. Hence

sup
z∈E∩B(x,r)

∥f(z)− Ax,r(z)∥ ≤ ε∥A′
x,r∥r, (6.24)

since (f, E,B) is ε-almost affine. Similarly, if r > diamE, then Ax,r = Bx∗,diamE and (6.24)
holds, sinceE∩B(x, r) = E = E∩B(x∗, diamE) and (f, E,B) is ε-almost affine. Therefore,
(f, E,A) is ε-almost affine. �
Definition 6.7. Let f : Rn → RN and let E ⊂ Rn be bounded. A family A of affine maps over
E is adapted to f on small scales if, for all x ∈ E and r ≤ diamE,

Ax,r(x+ rei) = f(x+ rei) for all i = 0, 1, . . . , n, (6.25)

where e0 = 0 and e1, . . . , en is the standard basis for Rn.

Lemma 6.8. For all n ≥ 1, there exists P = P (n) > 1 such that if Pε ≤ 1 and f : Rn → RN

is ε-almost affine over Bn(x0, 3r0) for some x0 ∈ Rn and r0 > 0, then (f,Bn(x0, r0),A) is
Pε-almost affine for some A that is adapted to f at small scales. In fact, given any B such that
(f,Bn(x0, 3r0),B) is ε-almost affine, there exists a family A of affine maps overBn(x0, r0) that
is adapted to f at small scales such that (f,Bn(x0, r0),A) is Pε-almost affine and such that
Ax,r = Bx,r for all x ∈ Bn(x0, r0) and for all r > 2r0.

We first prove an auxiliary lemma. For all bounded V ⊂ Rn with positive diameter, define

Ψ(V ) := (diamV )n/L n(coV ) ∈ (0,∞], (6.26)

where coV denotes the closed convex hull of V and by convention Ψ(V ) = ∞ whenever
L n(coV ) = 0. We remark that the isodiametric inequality asserts that Ψ(V ) ≥ Ψ(Bn(0, 1));
see e.g. [EG92, Chapter 2].

Lemma 6.9. Suppose V = {v0, . . . , vn} ⊂ Rn. If A,B : Rn → RN are affine maps such that
|A(v)−B(v)| ≤ ε diamV for all v ∈ V , then

|A(z)−B(z)| ≤ ε

(
diamV +

4n(n+1)/2

n!
Ψ(V ) dist(z, V )

)
for all z ∈ Rn. (6.27)
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Proof. If Ψ(V ) = ∞, then there is nothing to prove. Thus, assume that Ψ(V ) < ∞, which
ensures that v0, . . . vn are affinely independent. Let z ∈ Rn. By relabeling the elements of V , we
may assume without loss of generality that |z− v0| = dist(z, V ) and |v1− v0| = maxi |vi− v0|.
Then 1

2
diamV ≤ |v1 − v0| ≤ diamV . Furthermore, after a harmless translation, we may

assume without loss of generality that v0 = 0. Let {e1, . . . , en} be the standard basis for Rn and
let T : Rn → Rn be the invertible linear transformation such that T (ei) = vi for all i = 1, . . . , n.
Then, letting E = {0, e1, . . . , en},

L n(coV ) = L n(T (coE)) = L n(coE)| detT | = | detT |
n!

.

Hence Ψ(V ) = n!(diamV )n/| detT |. Next, note that
1

2
diamV ≤ |T (e1)| ≤ ∥T∥ ≤ (|v1|2 + · · ·+ |vn|2)1/2 ≤

√
nmax

i
|vi| =

√
n diamV,

where the third inequality follows from the Cauchy-Schwarz inequality. Thus, we see that

Ψ(V ) ≥ n!∥T∥n

nn/2| detT |
≥ n!

nn/2
∥T∥∥T−1∥ ≥ n!

nn/2

diamV

2
∥T−1∥.

Let A′ = A − A(0) and B′ = B − B(0) denote the linear parts of A and B, respectively. By
the hypothesis, |A′(v)− B′(v)| ≤ |A(v)− B(v)|+ |A(0)− B(0)| ≤ 2ε diamV for all v ∈ V .
Expanding z = a1v1 + · · ·+ anvn, it follows that

|A(z)−B(z)| ≤ |A(0)−B(0)|+
n∑

i=1

|ai| |A′(vi)−B′(vi)|

≤ (1 + 2(|a1|+ · · ·+ |an|)) ε diamV.

To continue, observe that
n∑

i=1

|ai| ≤
√
n

∣∣∣∣∣
n∑

i=1

aiei

∣∣∣∣∣ = √
n |T−1(z)| ≤

√
n ∥T−1∥|z| =

√
n ∥T−1∥ dist(z, V ).

Combining the previous three displayed equations yields (6.27). �

Proof of Lemma 6.8. Fix P > 1 to be specified later. Suppose that f is ε-almost affine over
Bn(x0, 3r0) for some x0 ∈ Rn and r0 > 0, for some ε > 0 such that Pε ≤ 1. Choose any B
such that (f,Bn(x0, 3r0),B) is ε-almost affine. Define a familyA of affine maps overBn(x0, r0)

as follows. For all x ∈ Bn(x0, r0) and 0 < r ≤ 2r0, define Ax,r to be the unique affine map
such that Ax,r(x) = f(x) and Ax,r(x + rei) = f(x + rei) for all 1 ≤ i ≤ n. And, for all
x ∈ Bn(x0, r0) and r > 2r0, setAx,r := Bx,r. Then A is adapted to f at small scales. It remains
to show that (f,Bn(x0, r0),A) is Pε-almost affine.

Fix x ∈ B(x0, r0) and r ≤ 2r0. Note thatB(x, r) ⊂ B(x0, 3r0). Let Y = {y0, . . . , yn} ⊂ Rn,
where y0 = x and yi = x + rei for all i = 1, . . . , n. Since diamY = r

√
2 and L n(coY ) =

rn/n!, we have Ψ(Y ) = 2n/2n! . Furthermore, for all y ∈ Y ,

|Ax,r(y)−Bx,r(y)| = |f(y)−Bx,r(y)| ≤ ε∥B′
x,r∥r =

ε√
2
∥B′

x,r∥ diamY,
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because A is adapted to f at small scales, (f,Bn(x0, 3r0),B) is ε-almost affine, and Y ⊂
Bn(x, r) ∩Bn(x0, 3r0). Thus, for all z ∈ Bn(x, r),

|Ax,r(z)−Bx,r(z)| ≤
ε√
2
∥B′

x,r∥ diamY +
4n(n+1)/2

n!
2n/2n!

ε√
2
∥B′

x,r∥ dist(z, Y )

≤
(
1 + 2(2n)(n+1)/2

)
ε∥B′

x,r∥r
(6.28)

by Lemma 6.9. Hence, writing θ := 1 + 2(2n)(n+1)/2 ≥ 5, we see that

(1− 2θε)∥B′
x,r∥r = sup

|z−x|=r

|Bx,r(z)−Bx,r(x)| − 2θε∥B′
x,r∥r

≤ sup
|z−x|=r

|Ax,r(z)− Ax,r(x)| = ∥A′
x,r∥r.

We now specify P ≥ 4θ so that ε ≤ 1/P ≤ 1/4θ and

∥B′
x,r∥ ≤ 2∥A′

x,r∥. (6.29)

It follows that
|f(z)− Ax,r(z)| ≤ |f(z)−Bx,r(z)|+ |Ax,r(z)−Bx,r(z)|

≤ (1 + θ)ε∥B′
x,r∥r ≤ (2 + 2θ)ε∥A′

x,r∥r ≤ 3θε∥A′
x,r∥r

(6.30)

for all z ∈ Bn(x, r), for all x ∈ Bn(x0, r0) and for all 0 < r ≤ 2r0.
Next, observe that

|f(z)− Ax,r(z)| ≤ ε∥A′
x,r∥r (6.31)

for all z ∈ Bn(x, r)∩Bn(x0, r0), for all x ∈ Bn(x0, r0), and for all r > 2r0, becauseAx,r = Bx,r

and (f,Bn(x0, 3r0),B) is ε-almost affine.
We now verify that A is C(n)ε-compatible. Fix x, y ∈ Bn(x0, r0) and r, s > 0 such that

s/2 ≤ r ≤ s and |x− y| ≤ s. We proceed by cases.

Case (1). Suppose that 2r0 < r and 2r0 < s. Then ∥A′
x,r − A′

y,s∥ ≤ εmin{∥A′
x,r∥, ∥A′

y,s∥},
since Ax,r = Bx,r, Ay,s = By,s and B is ε-compatible.

Case (2). Suppose that r ≤ 2r0 < s. On one hand, by (6.28) (twice),

∥A′
x,r −B′

x,r∥ = sup
|z−x|=r

1

r
|Ax,r(z)−Bx,r(z)− (Ax,r(x)−Bx,r(x))|

≤ 2θε∥B′
x,r∥.

(6.32)

On the other hand, since B is ε-compatible,

∥B′
x,r −B′

y,s∥ ≤ εmin{∥B′
x,r∥, ∥B′

y,s∥}. (6.33)

It follows that ∥B′
x,r∥ ≤ 2∥B′

y,s∥ and

∥A′
x,r −B′

y,s∥ ≤ ∥A′
x,r −B′

x,r∥+ ∥B′
x,r −B′

y,s∥ ≤ (4θ + 1)ε∥B′
y,s∥ ≤ 5θε∥B′

y,s∥.

Hence ∥B′
y,s∥ ≤ 5θε∥B′

y,s∥ + ∥A′
x,r∥ by the triangle inequality. We now require that P ≥ 10θ

so that ε ≤ 1/P ≤ 1/10θ and ∥B′
y,s∥ ≤ 2∥A′

x,r∥. Therefore, since Ay,s = By,s,

∥A′
x,r − A′

y,s∥ = ∥A′
x,r −B′

y,s∥ ≤ 10εmin{∥A′
x,r∥, ∥B′

y,s∥} = min{∥A′
x,r∥, ∥A′

y,s∥}.
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Case (3). Suppose that r ≤ 2r0 and s ≤ 2r0. Then

∥A′
x,r − A′

y,s∥ ≤ ∥A′
x,r −B′

x,r∥+ ∥B′
x,r −B′

y,s∥+ ∥B′
y,s − A′

y,s∥
≤ 2θε∥B′

x,r∥+ εmin{∥B′
x,r∥, ∥B′

y,s∥}+ 2θε∥B′
y,s∥

by (6.32) (twice) and (6.33). Hence, by (6.29),

∥A′
x,r − A′

y,s∥ ≤ (8θ + 2)εmax{∥A′
x,r∥, ∥A′

y,s∥} ≤ 9θεmax{∥A′
x,r∥, ∥A′

y,s∥}.

Using the triangle inequality (twice), it follows that

∥A′
x,r∥ ≤ 9θε∥A′

x,r∥+ ∥A′
y,s∥ and ∥A′

y,s∥ ≤ 9θε∥A′
y,s∥+ ∥A′

x,r∥.

We now require that P = 18θ so that ε ≤ 1/P ≤ 1/18θ. Therefore, max{∥A′
x,r∥, ∥A′

y,s∥} ≤
2min{∥A′

x,r∥, ∥A′
y,s∥} and

∥A′
x,r − A′

y,s∥ ≤ 18θεmin{∥A′
x,r∥, ∥A′

y,s∥}.

We have verified that A is Pε-compatible, where P = 18θ = 18
(
1 + 2(2n)(n+1)/2

)
. There-

fore, (f,Bn(x0, r0),A) is Pε-almost affine by (6.30) and (6.31). �

7. Almost affine quasisymmetric maps with small constants

To open this section, we supply a proof of Lemma 4.7, which for convenience we now restate.

Lemma 7.1. For all δ > 0 there exists δ∗ = δ∗(δ) with the following property. Suppose that
f : Rn → RN is quasisymmetric and Hf (Rn) ≤ H . If f is δ∗-almost affine over Bn(x0, 2r0)

and H̃f (B
n(x0, 2r0)) ≤ δ∗ for some x0 ∈ Rn and r0 > 0, then

θf(Rn)(f(x), r) ≤ Hδ for all x ∈ Bn(x0, r0) and 0 < r ≤ 1

54H
diam f(Bn(x0, r0)). (7.1)

Thus, if f is δ∗-almost affine over Rn and H̃f (Rn) ≤ δ∗, then f(Rn) is (Hδ,∞)-Reifenberg flat,
i.e. θf(Rn)(f(x), r) ≤ Hδ for all x ∈ Rn and r > 0.

Proof of Lemma 4.7 / Lemma 7.1. Given 0 < δ < 1, put ε = δ/18 and t = 1
2
− 1

9
δ. Observe

that this choice of parameters satisfies 2(t + 2ε) = 1. Let f : Rn → RN be quasisymmetric
with Hf (Rn) ≤ H , and let x0 ∈ Rn and r0 > 0. Assume that (f,Bn(x0, 2r0),A) is δ∗-almost
affine and H̃f (B

n(x0, 2r0)) ≤ δ∗ for some δ∗ ≤ ε to be specified below. Let x ∈ Bn(x0, r0) and
0 < r ≤ r0. Then, recalling (4.2), we find that

λn(A
′
x,r)r ≤ 2δ∗∥A′

x,r∥r + sup
|y−x|=r

|f(y)− f(x)|

≤ 2δ∗∥A′
x,r∥r + (1 + δ∗) inf

|y−x|=r
|f(y)− f(x)|

≤ 2δ∗(2 + δ∗)∥A′
x,r∥r + (1 + δ∗)λ1(A

′
x,r)r.

In particular, λn(A′
x,r) ≤ 2λ1(A

′
x,r) provided that we choose δ∗ to be smaller than some absolute

constant. By Lemma 6.4, it follows that

∥A′
x,r∥r ≤ diam f(Bn(x, r)) ≤ 3∥A′

x,r∥r, (7.2)
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inf
|y−x|=r

|f(y)− f(x)| ≥
(
1

6
− δ

27

)
diam f(Bn(x, r)) ≥ 1

9
diam f(Bn(x, r)), (7.3)

and

θf(Bn(x,r))

(
f(x),

1

6
diam f(Bn(x, r))

)
≤ 2

3
δ. (7.4)

On one hand, using (3.1) to shrink scales in (7.4), we obtain

θf(Bn(x,r))

(
f(x),

1

9H
diam f(Bn(x, r))

)
≤ Hδ. (7.5)

On the other hand, (7.3) and the hypothesis Hf (Rn) ≤ H yield

inf
|z−x|≥r

|f(z)− f(x)| ≥ 1

H
sup

|y−x|=r

|f(y)− f(x)| ≥ 1

9H
diam f(Bn(x, r)),

which implies that

f(Rn) ∩BN

(
f(x),

1

9H
diam f(Bn(x, r))

)
⊂ f(Bn(x, r)). (7.6)

Together (7.5) and (7.6) yield

θf(Rn)

(
f(x),

1

9H
diam f(Bn(x, r))

)
≤ Hδ for all x ∈ Bn(x0, r0) and 0 < r ≤ r0.

Finally, since A is 1-compatible and |x− x0| ≤ r0, we have
1

9H
diam f(Bn(x, r0)) ≥

1

9H
∥A′

x,r0
∥r0 ≥

1

18H
∥A′

x0,r0
∥r0 ≥

1

54H
diam f(Bn(x0, r0))

by (7.2). Combining the previous two displayed equations yields (7.1). �

Next up, we aim to prove Theorem 4.8, but first we prove an intermediate statement.

Lemma 7.2. For allN ≥ 2 and for all ε > 0, there exists δ > 0 such that if f : BN(x, r) → RN

is quasisymmetric and H̃f (B
N(x, r)) ≤ δ, then there is a similarity Sx,r : RN → RN such that

|f(y)− Sx,r(y)| ≤ ε∥S ′
x,r∥r for all y ∈ BN(x, r).

Proof. Recall that similarities are the compositions of translations, rotations, reflections, and
dilations in RN . Let N ≥ 2 be given. Suppose for contradiction that there exists ε > 0 and a
sequence of quasisymmetric maps f i : BN(xi, ri) → RN such that xi ∈ RN , ri > 0, and

H̃f i(BN(xi, ri)) ≤ 1/i,

but for every similarity S : RN → RN there exists yiS ∈ BN(xi, ri) such that

|f i(yiS)− S(yiS)| > ε∥S ′∥r.

For each i ≥ 1, let ϕi : RN → RN be any similarity such that ϕi(BN(0, 1)) = BN(xi, ri), let
ψi : RN → RN be any similarity such that ψi(f(xi)) = 0 and ψi(f(ϕi(e1))) = e1, and set

gi = ψi ◦ f i ◦ ϕi : BN(0, 1) → RN .
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Then each gi is a quasisymmetric map such that g(0) = 0, g(e1) = e1, and H̃gi(B
N(0, 1)) ≤ 1/i,

but for every similarity S : RN → RN there exists ziS ∈ BN(0, 1) such that

|gi(ziS)− S(ziS)| > ε∥S ′∥.

The family {gi : i ≥ 1} is sequentially compact by Theorem 2.4. Thus, we can find a weakly 1-
quasisymmetric map g : BN(0, 1) → RN and a sequence ik → ∞ such that gik → g uniformly
as k → ∞. By Corollary 2.9, there exists an similarity T : RN → RN such that g = T |BN (0,1).
Passing to a further subsequence, we can assume that gi → g uniformly and ziT → zT for some
zT ∈ BN(0, 1). This leads to a contradiction:

0 = |g(zT )− T (zT )| = lim inf
i→∞

|gi(ziT )− T (ziT )| ≥ ε∥T ′∥ > 0.

Therefore, for all ε > 0, there is δ > 0 such that if f : BN(x, r) → RN is quasisymmetric and
H̃f (B

N(x, r)) ≤ δ, then there is a similarity S : RN → RN such that |f(y)− S(y)| ≤ ε∥S ′∥r
for all y ∈ BN(x, r). �

We now give a proof of Theorem 4.8, which for convenience we now restate.

Theorem 7.3. Suppose N ≥ 2. For all τ > 0, there exists τ∗ = τ∗(τ,N) > 0 such that if
BN(x, 3r) ⊂ Y ⊂ RN for some x ∈ Rn and r > 0, f : Y → RN is quasisymmetric and
H̃f (B

N(x, 3r)) ≤ τ∗, then f |Y ∩Rn is τ -almost affine over Bn(x, r).

Proof of Theorem 4.8 / Theorem 7.3. It suffices to establish the theorem with Y = BN(0, 3),
x = 0 and r = 3. Let N ≥ 2 and τ > 0 be given, and fix 0 < τ∗ ≤ 1 to be specified below.
Without loss of generality, we shall assume that τ ≤ 1. Assume that f : BN(0, 3) → RN is
quasisymmetric and H̃f (B

N(0, 3)) ≤ τ∗. Note that BN(x, r) ⊂ BN(0, 3) for all x ∈ Bn(0, 1)

and r ≤ 2 = diamBn(0, 1). Let δ > 0 be the constant from Lemma 7.2 corresponding to
ε = min{1/12, τ/128}. Assume τ∗ ≤ δ. By Lemma 7.2, for all x ∈ Bn(0, 1) and 0 < r ≤ 2

we can find similarities Sx,r : RN → RN such that

sup
y∈BN (x,r)

|f(y)− Sx,r(y)| ≤ ε∥S ′
x,r∥r.

For each x ∈ Bn(0, 1) and 0 < r ≤ 2, let Ax,r : Rn → RN to be the restriction of Sx,r to Rn.
Then

∥S ′
x,r∥r ≤ 2ε∥S ′

x,r∥r + sup
|y−x|=r

|f(y)− f(x)|

≤ 2ε∥S ′
x,r∥r + (1 + τ∗) inf

|y−x|=r
|f(y)− f(x)|

≤ 2ε(2 + τ∗)∥S ′
x,r∥+ (1 + τ∗)λ1(S

′
x,r).

Since τ∗ ≤ 1 and ε ≤ 1/12, we have 2ε(2 + τ∗) ≤ 1/2 and

∥S ′
x,r∥ ≤ 2(1 + τ∗)λ1(S

′
x,r) ≤ 4λ1(S

′
x,r) ≤ 4∥A′

x,r∥.

Hence, for all x ∈ Bn(0, 1) and 0 < r ≤ 2,

sup
y∈Bn(x,r)

|f(y)− Ax,r(y)| ≤ 4ε∥A′
x,r∥ ≤ τ

32
∥A′

x,r∥r. (7.7)
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For all x ∈ Bn(0, 1) and r > 2 = diamBn(0, 1), assign Ax,r = A0,2. Then

A = {Ax,r : x ∈ Bn(0, 1), r > 0}

is a family of affine maps over Bn(0, 1) that is stable at large scales. Using (7.7), it readily
follows (cf. the proof of Lemma 6.6 above) that for all x ∈ Bn(0, 1) and r > 0,

|f(y)− Ax,r(y)| ≤
τ

32
∥A′

x,r∥r for all y ∈ Bn(x, r) ∩Bn(0, 1).

Thus, to show that (f,Bn(0, 1),A) is τ -almost affine, it is enough to check A is τ -compatible.
To that end, suppose that x, z ∈ Bn(0, 1) and 0 < s ≤ r ≤ 2s. We must show that

∥A′
x,r − A′

z,s∥ ≤ τ min{∥A′
x,r∥, ∥A′

z,s∥}. (7.8)

In view of (the proof of) Lemma 6.6 above, we may assume without loss of generality that
r ≤ 2 = diamBn(0, 1). Let w = 1

4
x+ 3

4
z so that Bn(w, r/4) ⊂ Bn(x, r) ∩Bn(z, s). By (7.7)

(four times),

∥A′
x,r − A′

z,s∥
r

4
= sup

|v−w|=r/4

|(Ax,r(v)− Az,s(v))− (Ax,r(w)− Az,s(w))|

≤ 2
τ

32
∥A′

x,r∥r + 2
τ

32
∥A′

z,s∥s ≤
τ

8
max{∥A′

x,r∥, ∥A′
z,s∥}r.

That is, ∥A′
x,r − A′

z,s∥ ≤ (τ/2)max{∥A′
x,r∥, ∥A′

z,s∥}. Thus, since τ/2 ≤ 1/2,

max{∥A′
x,r∥, ∥A′

z,s∥} ≤ 2min{∥A′
x,r∥, ∥A′

z,s∥}

and (7.8) holds. Therefore, the family A is τ -compatible and, by the discussion above, the map
f is τ -almost affine over Bn(0, 1). �

8. Extensions of almost affine maps I

The goal of this section is to prove the following extension theorems for almost affine maps
with small constant; cf. bi-Lipschitz extensions of “Reifenberg flat functions” constructed by the
first named author and Raanan Schul [AS12, Theorem III]. Throughout this section, we freeze
dimensions 1 ≤ n ≤ N . See §4.2 above to recall the definition of an almost affine map.

Theorem 8.1. There exist constants ε0 = ε0(n) > 0 and C0 = C0(n) > 1 with the following
property. If 1 ≤ n ≤ N , E ( Rn is closed, and (f, E,A) is ε-almost affine for some ε ≤ ε0,
then the map f : E → RN can be extended to a C0ε-almost affine map F : Rn → RN such
that (F,Rn,A+) is C0ε-almost affine for some C0ε-compatible family A+ of affine maps over
Rn extending A, i.e. F |E = f and A+

x,r = Ax,r for all x ∈ E and r > 0.

Theorem 8.2. For all 1 ≤ H < ∞ and 1 < ρ ≤ 2, there exist ε1 = ε1(n,H, ρ) > 0 and
C1 = C1(n) > 0 with the following property. If 1 ≤ n ≤ N , E ( Rn is closed, f : E → RN is
nonconstant, and (f, E,A) is ε-almost affine for some ε ≤ ε1 and some A such that

λn(A
′
x,r) ≤ Hλ1(A

′
x,r) for all x ∈ E and r > 0, (8.1)

then f can be extended to a C1ε-almost affine map F : Rn → RN such that (F,Rn,A+) is
C1ε-almost affine for some C1ε-compatible family A+ of affine maps over Rn extending A, i.e.
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F |E = f and A+
x,r = Ax,r for all x ∈ E and r > 0. Moreover, the extension F is weakly

ρH-quasisymmetric and the extension A+ = {Ax,r : x ∈ Rn, r > 0} ⊃ A satisfies

λn(A
′
x,r) ≤

ρ+ 1

2
Hλ1(A

′
x,r) for all x ∈ Rn and r > 0. (8.2)

We split the proofs of Theorems 8.1 and 8.2 into several steps. First, to each map f : E → RN

defined on a closed set E ( Rn and each family A of affine maps over E, we use a Whitney
decomposition of Rn \ E together with the maps in A to extend f to a map F : Rn → RN

and extend A to a family A+ of affine maps over Rn (see Definition 8.3). Second, we make a
series of estimates on F and A+ under the assumption that (f, E,A) is ε-almost affine and ε is
small (see Hypothesis 8.4 and Lemmas 8.5 – 8.8). Third, we combine these estimates and prove
Theorem 8.1. Finally, at the end of the section, we derive Theorem 8.2 form Theorem 8.1.

Definition 8.3 (Extensions of f and A). Let 1 ≤ n ≤ N , E ( Rn closed, f : E → RN and A
a family of affine maps over E be given. For all x ∈ Rn, pick x′ ∈ E such that

d(x) := dist(x,E) = |x− x′|.

(1) (Whitney cubes) LetW be a Whitney decomposition ofRn\E, constructed by takingW to be
the collection of all maximal almost disjoint closed dyadic cubesQ ⊂ Rn such that 3Q∩E = ∅,
where λQ denotes the concentric cube aboutQ that is obtained by dilatingQ by a factor of λ > 0.
The collection W of cubes satisfies the following properties:

(a)
∪

Q∈W Q =
∪

Q∈W 2Q = Rn \ E;
(b) (1/

√
n) diamQ ≤ d(x) ≤ 4 diamQ for all Q ∈ W and for all x ∈ Q;

(c) (1/2
√
n) diamQ ≤ d(y) ≤ (9/2) diamQ for all Q ∈ W and for all y ∈ 2Q;

(d) if Q,R ∈ W and 2Q ∩ 2R ̸= ∅, then diamR ≤ 9
√
n diamQ;

(e)
∑

Q∈W χ2Q(x) .n 1 for all x ∈ Rn.
(2) (partition of unity) Let Φ = {ϕQ : Q ∈ W} be a smooth partition of unity subordinate to
2W = {2Q : Q ∈ W}, i.e. a collection of C∞ functions ϕQ : Rn → [0, 1] such that

(a) 0 ≤ ϕQ ≤ χ2Q and |∂αϕQ| .n,|α| (diamQ)−|α|χ2Q for all Q ∈ W and each multi-index
α of order |α| ≥ 1; and,

(b)
∑

Q∈W ϕQ ≡ χRn\E and
∑

Q∈W ∂αϕQ ≡ 0 for each multi-index α of order |α| ≥ 1.
(3) (extension of f ) For all Q ∈ W , choose some wQ ∈ Q such that |wQ − w′

Q| = infx∈Q d(x).
Set zQ := w′

Q, rQ := diamQ and AQ := AzQ,rQ . Define F : Rn → RN by the rule

F (x) =

{
f(x) if x ∈ E,∑

Q∈W ϕQ(x)AQ(x) if x ∈ Rn \ E.

(4) (extension of A) Construct A+ = {Ax,r : x ∈ Rn, r > 0} ⊃ A by defining the maps
Ax,r : Rn → RN at each x ∈ Rn \ E as follows. For all 0 < r < d(x)/2, define Ax,r to be the
first-order Taylor approximation of F at x, i.e. the affine map given by the rule

Ax,r(y) = F (x) +DF (x)(y − x) for all y ∈ Rn.

For all r ≥ d(x)/2, define Ax,r = Ax′,r.
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Hypothesis 8.4. Let E ( Rn be closed, let f : E → RN , and let A be a family of affine maps
over E. Define {x′}x∈Rn , W , Φ, {wQ}Q∈W , {zQ}Q∈W , {rQ}Q∈W , {AQ}Q∈W , F : Rn → RN

and A+ ⊃ A by Definition 8.3. Assume that (f, E,A) is ε-almost affine for some 0 < ε ≤ ε0 <√
2− 1.

Lemma 8.5. Assume Hypothesis 8.4. If Q,R ∈ W and 2Q ∩ 2R ̸= ∅, then ∥A′
Q∥ ∼n ∥A′

R∥,
∥A′

Q − A′
R∥ .n ε∥A′

Q∥ and |AQ(x)− AR(x)| .n ε∥A′
Q∥ diamQ for all x ∈ 2Q ∪ 2R.

Proof. LetQ,R ∈ W and assume that there exists y ∈ 2Q∩2R. Recall that diamQ ∼n diamR

by Definition 8.3.1(d). It follows that

|zQ − zR| ≤ |zQ − wQ|+ |wQ − y|+ |y − wR|+ |wR − zR|
≤ 4 diamQ+ diam2Q+ diam2R + 4diamR .n diamQ.

Therefore, since ε . 1 and

τ(zQ, rQ, zR, rR) =
max{diamQ, diamR, 2|zQ − zR|}

min{diamQ, diamR}
.n 1,

we have ∥A′
Q − A′

R∥ .n εmin{∥A′
Q∥, ∥A′

R∥} and ∥A′
Q∥ ∼n ∥A′

R∥ by Lemma 6.1 (6.5) and
(6.6). To continue, observe that for all x ∈ 2R,

|x− zQ| ≤ |x− y|+ |y − wQ|+ |wQ − zQ| ≤ diam2R + diam2Q+ 4diamQ .n diamQ.

Similarly, |x− zR| .n diamR ∼n diamQ for all x ∈ 2Q. Hence dist(x, {zQ, zR}) .n diamQ

for all x ∈ 2Q∪2R. We conclude that |AQ(x)−AR(x)| .n ε∥A′
Q∥ diamQ for all x ∈ 2Q∪2R

by Lemma 6.2 (6.11). �

Lemma 8.6. Assume Hypothesis 8.4. Let x ∈ Rn and r > 0. If r ≥ d(x)/2, then

∥DF (y)− A′
x′,r∥ .n Tε

(
C(n)

r

d(y)

)
ε∥A′

x′,r∥ for all y ∈ Bn(x, 2r) \ E, (8.3)

where C(n) > 0 denotes some constant depending on at most n, and Tε : [1,∞) → [1,∞) was
defined above Lemma 6.1. For all a ≥ 1, there exists ε̃ = ε̃(n, a) > 0 such that if, in addition,
some y0 ∈ Bn(x, 2r) \ E satisfies r ≤ ad(y0) and ε ≤ ε̃, then

max{∥DF (y0)∥, ∥A′
x′,r∥} ≤ 2min{∥DF (y0)∥, ∥A′

x′,r∥} (8.4)

and
∥DF (y0)− A′

x′,r∥ .n,a εmin{∥DF (y0)∥, ∥A′
x′,r∥}. (8.5)

Proof. Fix x ∈ Rn and r > 0 such that r ≥ d(x)/2. To start we first establish an auxiliary
inequality for the affine maps AQ such that 2Q intersects Bn(x, 2r).

Suppose that Q ∈ W satisfies 2Q ∩ Bn(x, 2r) ̸= ∅. Let p ∈ 2Q ∩ Bn(x, 2r). For all
z ∈ Bn(zQ, diamQ),

|z − x′| ≤ |z − zQ|+ |zQ − wQ|+ |wQ − p|+ |p− x|+ |x− x′|
≤ diamQ+ 4diamQ+ diam2Q+ 2r + d(x) ≤ 7 diamQ+ 4r.
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Since p ∈ 2Q ∩Bn(x, 2r), we have

(1/2
√
n) diamQ ≤ d(p) ≤ |p− x|+ |x− x′| ≤ 4r.

Hence diamQ .n r. We conclude that |z − x′| .n r for all z ∈ Bn(zQ, diamQ). Thus,

τ(zQ, rQ, x
′, r) =

max{diamQ, r, 2|zQ − x′|}
min{diamQ, r}

.n
r

diamQ
.

Therefore, for all Q such that 2Q ∩B(x, 2r) ̸= ∅,

∥A′
Q − A′

x′,r∥ ≤ Tε

(
C(n)

r

diamQ

)
εmin{∥A′

Q∥, ∥A′
x′,r∥} (8.6)

by Lemma 6.1 (6.3), where C(n) > 0 is a constant depending on at most n such that C(n)r ≥
diamQ.

Fix y ∈ B(x, 2r) \ E and choose R ∈ W such that y ∈ R. For vectors u ∈ RN and v ∈ Rn,
let u⊗v : Rn → RN be the linear transformation given by (u⊗v)(w) = ⟨v, w⟩u for allw ∈ Rn.
By the product rule,

DF (y)− A′
x′,r =

∑
Q∈W

AQ(y)⊗DϕQ(y) + ϕQ(y)(A
′
Q − A′

x′,r).

Recall that the partition of unity was defined so that ϕQ(y) = 0 andDϕQ(y) = 0 unless y ∈ 2Q,∑
Q∈W ϕQ ≡ χRn\E , and

∑
Q∈W DϕQ ≡ 0. Thus, recalling the definition of the cube R above,

DF (y)− A′
x′,r =

∑
{Q∈W:y∈2Q}

(AQ(y)− AR(y))⊗DϕQ(y) + ϕQ(y)(A
′
Q − A′

x′,r).

Therefore, by Lemma 8.5, Definition 8.3.2(a), (8.6), the bound 1 ≤ Tδ(t) for all δ > 0 and t ≥ 1,
the assumption ε . 1, and Definition 8.3.1(e),

∥DF (y)− A′
x′,r∥ .n

∑
{Q∈W:y∈2Q}

ε∥A′
Q∥(diamQ)(diamQ)−1 + Tε

(
C(n)

r

diamQ

)
ε∥A′

x′,r∥

.n max
{Q∈W:y∈2Q}

Tε

(
C(n)

r

diamQ

)
ε∥A′

x′,r∥.

Because diamQ ∼n d(y) for Q ∈ W such that y ∈ 2Q, and Tε(t) is increasing in t, we obtain
by increasing the value C(n) > 0 as necessary that

∥DF (y)− A′
x′,r∥ .n Tε

(
C(n)

r

d(y)

)
ε∥A′

x′,r∥.

This establishes (8.3).
To conclude suppose that y0 ∈ B(x, 2r) \ E satisfies r ≤ ad(y0). Then, by (8.3),

∥DF (y0)− A′
x′,r∥ .n Tε (C(n)a) ε∥A′

x′,r∥ .n,a ε∥A′
x′,r∥.

That is, ∥DF (y0) − A′
x′,r∥ ≤ C(n, a)ε∥A′

x′,r∥ for some constant C(n, a) > 0 depending only
on n and a. Hence, by the triangle inequality (twice),

∥DF (y0)∥ ≤ C(n, a)ε∥A′
x′,r∥+ ∥A′

x′,r∥ and ∥A′
x′,r∥ ≤ C(n, a)ε∥A′

x′,r∥+ ∥DF (y0)∥.
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Therefore, (8.4) and (8.5) hold provided that ε ≤ 1/2C(n, a) =: ε̃(n, a). �

Lemma 8.7. Assume Hypothesis 8.4. Let x ∈ Rn and r > 0. If r ≥ d(x)/2, then

|F (y)− Ax′,r(y)| .n,ε0 ε∥A′
x′,r∥r for all y ∈ Bn(x, r). (8.7)

Proof. Suppose that x ∈ Rn and r > 0 satisfy r ≥ d(x)/2. There are two cases.

Case (1). Suppose that y ∈ B(x, 2r) ∩E. Then |y − x′| ≤ |y − x|+ |x− x′| ≤ 2r + 2r ≤ 4r,
F (y) = f(y) and

|F (y)− Ax′,r(y)| ≤ |f(y)− Ax′,4r(y)|+ |Ax′,4r(y)− Ax′,r(y)|.

On one hand, |f(y) − Ax′,4r(y)| ≤ ε∥A′
x′,4r∥4r, because (f, E,A) is ε-almost affine and y ∈

E ∩Bn(x′, 4r). On the other hand,

|Ax′,4r(y)− Ax′,r(y)| . εmin{∥A′
x′,4r∥, ∥A′

x′,r∥}4r

by Lemma 6.2 (6.11), because ε ≤ 1, |x′−x′| = 0, dist(y, {x′, x′}) ≤ 4r and τ(x′, 4r, x′, r) = 4.
Moreover, ∥A′

x′,4r∥ ∼ ∥A′
x′,r∥, by Lemma 6.1 (6.6). All together, |F (y)−Ax′,r(y)| . ε∥A′

x′,r∥r.

Case (2). Suppose that y ∈ B(x, r) \ E. Note that, away from its endpoints, the line segment
connecting y and y′ lies wholly within Bn(x, 2r) \ E. Thus, by Case (1) and Lemma 8.6,

|F (y)− Ax′,r(y)| ≤ |F (y′)− Ax′,r(y
′)|+

∫ |y−y′|

0

∥∥∥∥DF (y′ + t
y − y′

|y − y′|

)
− A′

x′,r

∥∥∥∥ dt
.n ε∥A′

x′,r∥r + ε∥A′
x′,r∥

∫ |y−y′|

0

Tε

(
C(n)

r

t

)
dt.

By a change of variables u = t/(C(n)r), we obtain∫ |y−y′|

0

Tε

(
C(n)

r

t

)
dt = C(n)r

∫ |y−y′|/(C(n)r)

0

Tε(u
−1)du ≤ C(n)r

∫ 3/C(n)

0

Tε0(u
−1)du,

since |y− y′| = dist(y, E) ≤ |y−x|+ |x−x′| ≤ r+2r = 3r and Tε ≤ Tε0 pointwise. Finally,
observe that Tε0(u−1) = u−2 log2(1+ε0) [2 log(u−1) + 1] is integrable at u = 0, since ε0 <

√
2−1

(i.e. 2 log2(1 + ε0) < 1). It follows that |F (y)− Ax′,r(y)| .n,ε0 ε∥A′
x′,r∥r.

Therefore, in both cases, |F (y)− Ax′,r(y)| .n,ε0 ε∥A′
x′,r∥r for all y ∈ B(x, r). �

Lemma 8.8. Assume Hypothesis 8.4. There exists ε̇ = ε̇(n) such that if, in addition, ε ≤ ε̇, then
for all x ∈ Rn \ E, for all 0 < r < d(x)/2, and for all y ∈ Bn(x, r) ⊂ Rn \ E,

|F (y)− Ax,r(y)| .n ε
r

d(x)
∥A′

x,r∥r, (8.8)

and
∥DF (y)−DF (x)∥ .n ε

r

d(x)
min{∥DF (y)∥, ∥DF (x)∥}. (8.9)
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Proof. First let us introduce some notation to facilitate the proof. Let L(U, V ) denote the space
of bounded linear transformations from a normed vector space U to a normed vector space V ,
equipped with the operator norm. For any u ∈ U and v ∈ Rn, define u⊗ v ∈ L(Rn, U) by

(u⊗ v)(w) = ⟨v, w⟩u for all w ∈ Rn.

Also, for any u ∈ U and B ∈ L(Rn,Rn), define u⊗B ∈ L(Rn,L(Rn, U)) by

(u⊗B)(v) = u⊗B(v) for all v ∈ Rn.

If G : Rn → RN is smooth near y, let D2G(y) ∈ L(Rn,L(Rn,RN)) denote the total derivative
of the map z 7→ DG(z). We note for use below that

∥D2G(y)∥ = sup
|p|=|q|=1

∣∣∣∣∣∣
(

n∑
j,k=1

pj qk
∂2Gi

∂xj∂xk
(y)

)N

i=1

∣∣∣∣∣∣ ≥ max
1≤j,k≤n

∣∣∣∣∣
(

∂2Gi

∂xj∂xk
(y)

)N

i=1

∣∣∣∣∣ , (8.10)

where G = (G1, . . . , GN) and the inequality follows by letting p and q range over {e1, . . . , en}.
Fix ε̇ ≤ ε̃(n, 1) (see Lemma 8.6) to be specified below and assume that ε ≤ ε̇. Let x ∈ Rn\E,

let 0 < r < d(x)/2, and let y ∈ Bn(x, r). Then

F (z) =
∑

{Q∈W:z∈2Q}

ϕQ(z)AQ(z) for all z ∈ Bn(y, d(y)/2). (8.11)

First, differentiating (8.11) at z near y, we obtain

DF (z) =
∑

{Q∈W:z∈2Q}

AQ(z)⊗DϕQ(z) + ϕQ(z)A
′
Q for all z ∈ Bn(y, d(y)/4). (8.12)

Second, differentiating (8.12) at z = y, we obtain

D2F (y) =
∑

{Q∈W:y∈2Q}

2A′
Q ⊗DϕQ(y) + AQ(y)⊗D2ϕQ(y). (8.13)

Choose any cube R ∈ W such that y ∈ R. Because
∑

Q∈W DϕQ ≡ 0 and
∑

Q∈W D2ϕQ ≡ 0,
we can rewrite (8.13) as

D2F (y) =
∑

{Q∈W:y∈2Q}

2(A′
Q − A′

R)⊗DϕQ(y) + (AQ(y)− AR(y))⊗D2ϕQ(y).

Thus, by Lemma 8.5, Definition 8.3.2(a), and Definition 8.3.1(e),

∥D2F (y)∥ .n

∑
{Q∈W:y∈2Q}

ε
∥A′

Q∥
diamQ

+ ε
∥A′

Q∥ diamQ

(diamQ)2
.n max

{Q∈W:y∈2Q}
ε
∥A′

Q∥
diamQ

. (8.14)

Suppose thatQ ∈ W is such that y ∈ 2Q. On one hand, since d(x) > 0 and y ∈ Bn(x, d(x)/2),

d(x) ∼ d(y) ∼n diamQ. (8.15)

On the other hand, |x− zQ| ≤ |x− y|+ |y − wQ|+ |wQ − zQ| .n diamQ. It follows that

τ

(
zQ, diamQ, x,

d(x)

2

)
=

max{diamQ, d(x)/2, 2|zQ − x|}
min{diamQ, d(x)/2}

.n 1.
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Hence ∥A′
Q∥ ∼n ∥A′

x,d(x)/2∥ = ∥A′
x′,d(x)/2∥ by Lemma 6.1 (6.6). Combining this observation

with (8.14), (8.15), and Lemma 8.6 (8.4), we conclude that

∥D2F (y)∥ .n ε
∥A′

x′,d(x)/2∥
d(x)

.n ε
∥DF (x)∥
d(x)

for all y ∈ Bn(x, r). (8.16)

Therefore, there exists a constant C(n) > 0 depending on at most n such that

∥DF (y)−DF (x)∥ ≤ C(n)ε
∥DF (x)∥
d(x)

|y − x| ≤ C(n)ε
r

d(x)
∥DF (x)∥ (8.17)

for all y ∈ Bn(x, r), where the first inequality holds by the mean value theorem and (8.16).
Applying the triangle inequality, (8.17) and the bound r ≤ d(x)/2 (twice each), we see that

∥DF (x)∥ ≤ C(n)
ε

2
∥DF (x)∥+ ∥DF (y)∥ and

∥DF (y)∥ ≤ C(n)
ε

2
∥DF (x)∥+ ∥DF (x)∥.

(8.18)

We now insist that ε̇ ≤ 1/C(n), which ensures that

max{∥DF (x)∥, ∥DF (y)∥} ≤ 2min{∥DF (x)∥, ∥DF (y)∥} (8.19)

by (8.18). Combining (8.17) and (8.19) yields (8.9). Finally, by Taylor’s remainder theorem,

F (y)− Ax,r(y) = F (y)− F (x)−DF (x)(y − x)

=
n∑

j,k=1

(yj − xj)(yk − xk)

∫ 1

0

(1− t)

(
∂2F i

∂xj∂xk
(x+ t(y − x))

)N

i=1

dt.

Therefore, by the triangle inequality, our assumption that |y − x| ≤ r, and (8.10),

|F (y)− Ax,r(y)| ≤
n∑

j,k=1

|yj − xj||yk − xk|
∫ 1

0

∣∣∣∣∣
(

∂2F i

∂xj∂xk
(x+ t(y − x))

)N

i=1

∣∣∣∣∣ dt
≤ r2

∫ 1

0

n∑
j,k=1

∣∣∣∣∣
(

∂2F i

∂xj∂xk
(x+ t(y − x))

)N

i=1

∣∣∣∣∣ dt
≤ r2 sup

z∈[x,y]

(
n2 max

1≤j,k≤n

∣∣∣∣∣
(

∂2F i

∂xj∂xk
(z)

)N

i=1

∣∣∣∣∣
)

.n sup
z∈[x,y]

∥D2F (z)∥r2.

Applying (8.16) yields (8.8). �

We are ready to prove Theorem 8.1.

Proof of Theorem 8.1. Assume Hypothesis 8.4 with parameter ε0 := min{2/5, ε̃(n, 1), ε̇(n)} <√
2− 1 (see Lemmas 8.6 and 8.8). We proceed in two steps.

Step 1. The family A+ is Cε-compatible over Rn for some constant C = C(n) > 1.

Fix x, y ∈ Rn and r, s > 0 such that |x − y| ≤ max{r, s} and 1/2 ≤ r/s ≤ 2. We shall
estimate ∥A′

x,r − A′
y,s∥ in three separate cases:
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Case (1). Assume that r ≥ d(x)/2 and s ≥ d(y)/2. Then

|x′ − y′| ≤ |x′ − x|+ |x− y|+ |y − y′| ≤ d(x) + max{r, s}+ d(y) ≤ 5max{r, s}.

In particular,

τ(x′, r, y′, s) =
max{r, s, 2|x′ − y′|}

min{r, s}
≤ 10max{r, s}

min{r, s}
≤ 20.

Therefore, ∥A′
x,r−A′

y,s∥ = ∥A′
x′,r−A′

y′,s∥ . εmin{∥A′
x′,r∥, ∥A′

y′,s∥} = εmin{∥A′
x,r∥, ∥A′

y,s∥}
by Lemma 6.1 (6.5).

Case (2). Assume that r ≥ d(x)/2 and s < d(y)/2. Since y ∈ Bn(x, 2r)\E and r ≤ 2s < d(y),

∥A′
x,r − A′

y,s∥ = ∥Ax′,r −DF (y)∥ .n εmin{∥A′
x′,r∥, ∥DF (y)∥} = min{∥A′

x,r∥, ∥A′
y,s∥}

by Lemma 8.6.

Case (3). Assume that r < d(x)/2 and s < d(y)/2. Since |x− y| ≤ r,

∥A′
x,r−A′

y,s∥ = ∥DF (x)−DF (y)∥ .n εmin{∥DF (x)∥, ∥DF (y)∥} = εmin{∥A′
x,r∥, ∥A′

y,s∥}

by Lemma 8.8.

Therefore, A+ is Cε-compatible for some constant C > 1 depending only on n.

Step 2. (F,Rn,A+) is C0ε-almost affine for some constant C0 = C0(n) > 1.

Let y ∈ Bn(x, r). On one hand, if r ≥ d(x)/2, then |F (y) − Ax,r(y)| .n ε∥A′
x,r∥r for all

y ∈ Bn(x, r), by Lemma 8.7. On the other hand, if r < d(x)/2, then |F (y) − Ax,r(y)| .n

ε∥A′
x,r∥r for all y ∈ Bn(x, r), by Lemma 8.8. Therefore, (F,Rn,A+) is C0ε-almost affine for

some constant C0 > 1 depending only on n. �
We now derive Theorem 8.2 from Theorem 8.1.

Proof of Theorem 8.2. LetH ≥ 1, and let 1 < ρ ≤ 2 be given. Fix ε1 ∈ (0, ε0] to be chosen later
and put C1 = C0, where ε0 and C0 are the constants from Theorem 8.1. Assume Hypothesis 8.4
with ε ≤ ε1. In addition, assume that f is nonconstant and λn(A′

x,r) ≤ Hλ1(A
′
x,r) for all x ∈ E

and r > 0. By (the proof of) Theorem 8.1, (F,Rn,A+) is C1ε-almost affine. Thus, to establish
Theorem 8.2, all that remains is to show that F is weakly ρH-quasisymmetric. We break the
argument into three steps.

Step 1. If ε1 is sufficiently small, then λn(A′
x,r) ≤ ((ρ+ 1)/2)Hλ1(A

′
x,r) for all Ax,r ∈ A+.

Fix x ∈ Rn \ E. On one hand, if r ≥ d(x)/2, then Ax,r = Ax′,r ∈ A. Hence λn(A′
x,r) ≤

Hλ1(A
′
x,r) for all r ≥ d(x)/2. On the other hand, suppose that 0 < r < d(x)/2 =: δ. Then

Ax,r is the first-order Taylor approximation of F at x and A′
x,r = DF (x). By Lemma 8.6 (8.5),

we have ∥A′
x,r − A′

x′,δ∥ ≤ C2ε∥A′
x,r∥ = C2ελn(A

′
x,r) for some C2 = C2(n) > 0. Thus, since

λn(A
′
x′,δ) ≤ Hλ1(A

′
x′,δ),

λn(A
′
x,r) = ∥A′

x,r∥ ≤ ∥A′
x,r − A′

x′,δ∥+ ∥A′
x′,δ∥ ≤ C2ελn(A

′
x,r) +H inf

|z|=1
|A′

x′,δz|

≤ (1 +H)C2ελn(A
′
x,r) +H inf

|z|=1
|A′

x,rz| ≤ 2HC2ελn(A
′
x,r) +Hλ1(A

′
x,r).
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In particular, λn(A′
x,r) ≤ ((ρ + 1)/2)Hλ1(A

′
x,r) if ε1 ≤ ((ρ − 1)/(ρ + 1))/2HC2. Therefore,

λn(A
′
x,r) ≤ ((ρ+1)/2)Hλ1(A

′
x,r) for all Ax,r ∈ A+ if ε1 is small enough depending only on n,

H and ρ.

Step 2. If ε1 is sufficiently small, then HF (Rn) ≤ ρH .

Fix x, y, z ∈ Rn such that |y − x| ≤ |z − x| =: r. Assume that ε1 satisfies the constraints of
Step 1. Then, since F is C1ε-close to A+ and Ax,r is weakly ((ρ+ 1)/2)H-quasisymmetric,

|F (y)− F (x)| ≤ 2C1ε∥A′
x,r∥r + |Ax,r(y)− Ax,r(x)|

≤ 2C1ε∥A′
x,r∥r +

(
ρ+ 1

2

)
H|Ax,r(z)− Ax,r(x)|

≤ (2 + (ρ+ 1)H)C1ε∥A′
x,r∥r +

(
ρ+ 1

2

)
H|F (z)− F (x)|.

To continue, observe by similar reasoning that

∥A′
x,r∥r ≤

ρ+ 1

2
H|Ax,r(z)− Ax,r(x)|

≤ (ρ+ 1)HC1ε∥A′
x,r∥r +

(
ρ+ 1

2

)
H|F (z)− F (x)|.

Hence, if ε1 ≤ 1/2(ρ+ 1)HC1, then ∥A′
x,r∥r ≤ (ρ+ 1)H|F (z)− F (x)| and

|F (y)− F (x)| ≤ (2 + (ρ+ 1)H)C1ε(ρ+ 1)H|F (z)− F (x)|+ ρ+ 1

2
H|F (z)− F (x)|

≤ 15HC1εH|F (z)− F (x)|+ ρ+ 1

2
H|F (z)− F (x)|.

Therefore, if ε1 ≤ (ρ− 1)/30HC1, then |F (y)−F (x)| ≤ ρH|F (z)−F (x)| for all x, y, z such
that |x− y| ≤ |x− z|. That is, HF (Rn) ≤ ρH if ε1 is sufficiently small.

Step 3. If ε1 is sufficiently small, then F is weakly ρH-quasisymmetric.

First, assume thatC1ε1 < ε̂, which guarantees thatF is (locally Hölder) continuous by Lemma
6.3. Second, note that F is nonconstant, since f is nonconstant and F extends f . Third, assume
that ε1 is small enough so that the conclusion of Step 2 holds. Then, because F is continuous
and nonconstant and HF (Rn) ≤ ρH , the map F is weakly ρH-quasisymmetric, by Lemma 2.5.

To complete the proof of the theorem, choose ε1 sufficiently small so that the conclusion of
Steps 1 and 3 hold. Reviewing each of the constraints imposed on ε1 in Steps 1 through 3 above,
we see that ε1 can be chosen to depend only on n, H and ρ. �

9. Extensions of almost affine maps II: beta number estimates

The goal of this section is to prove Theorem 4.9, which for convenience we now restate.

Theorem 9.1. Suppose 1 ≤ n ≤ N − 1. For all ε > 0, there exists ε∗ = ε∗(ε, n) > 0 with
the following property. If for some x ∈ Rn and r > 0 a map f : RN → RN is ε∗-almost affine
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over Bn(x, 9r), f |BN (x,3r) is a topological embedding and H̃f (B
N(x, 3r)) ≤ ε∗, and there exist

a closed set E ⊂ Bn(x, r) and constants γE > 0 and CE > 0 such that

diamE ≥ γE diamBn(x, r) (9.1)

and ∫ r

0

H̃f (B
N(y, s))2

ds

s
≤ CE for all y ∈ E, (9.2)

then there exists a quasisymmetric map F : Rn → RN such that F |E = f |E , F is ε-almost affine
over Rn, H̃F (Rn) ≤ ε, diamF (Bn(x, r)) ∼n,N,γE diam f(Bn(x, r)), and∫ ∞

0

βF (Rn)(F (y), s)
2 ds

s
.n,N CE + ε2 for all y ∈ Rn. (9.3)

The extension in Theorem 4.9 / Theorem 9.1 will be constructed by applying Theorem 8.2 with
a compatible family A of affine maps over E satisfying two additional properties: A is stable at
large scales (recall Definition 6.5); and, A is adapted to f at small scales (recall Definition 6.7).
More precisely, we use A given by the following lemma.

Lemma 9.2. For all n ≥ 1 and ε > 0, there exists ε′ = ε′(ε, n) > 0 with the following property.
Let x ∈ Rn, let r > 0, and let E ⊂ Bn(x, r) be a closed set. If f : Rn → RN is ε′-almost affine
overBn(x, 9r) and H̃f (B

n(x, 3r)) ≤ ε′, then (f, E,A) is ε-almost affine for some ε-compatible
family A of affine maps over E such that

λn(Ay,s) ≤ (1 + ε)λ1(Ay,s) for all Ay,s ∈ A, (9.4)

A is adapted to f at small scales, and A is stable at large scales. Moreover, A can be chosen
such that for all y ∈ E and 0 < s ≤ diamE,

|f(z)− Ay,s(z)| ≤ ε∥A′
y,s∥s for all z ∈ Bn(y, s). (9.5)

Proof. Let x ∈ Rn, let r > 0, and let E ⊂ Bn(x, r) be closed. Let ε > 0 arbitrary be given, and
fix ε′ > 0 to be specified later. Suppose that f : Rn → RN is ε′-almost affine over Bn(x, 9r),
and H̃f (B

n(x, 3r)) ≤ ε′. We require Pε′ ≤ 1. Then, by Lemma 6.8, there exists a Pε′-
compatible family B of affine maps over Bn(x, 3r) such that B is adapted to f at small scales
and (f,Bn(x, 3r),B) is Pε′-almost affine. Let BE = {Bx,r : x ∈ E, r > 0} denote the
restriction of B to affine maps over E. If By,s ∈ BE for some y ∈ E and 0 < s ≤ diamE, then

By,s(y) = f(y) and By,s(y + sei) = f(y + sei) for all i = 1, . . . , n,

since s ≤ diamBn(x, 3r) and B is adapted to f at small scales. In other words, BE is adapted
to f at small scales, as well. Choose any y∗ ∈ E. Then, by Lemma 6.6, we know that (f, E,A)

is Pε′-almost affine, where the family A of affine maps over E is defined by

Ay,s =

{
By,s if s ≤ diamE,

By∗,diamE if s > diamE.

In particular, A is a Pε′-compatible family of almost affine maps over E that is simultaneously
adapted to f at small scales and stable at large scales.
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Next we estimate the weak quasisymmetry of affine maps in A. Fix y ∈ E and 0 < s ≤
diamE. Then Ay,s = By,s and Bn(y, s) ⊂ Bn(x, 3r). It follows that

|f(z)− Ay,s(z)| ≤ Pε′∥A′
y,s∥s for all z ∈ Bn(y, s), (9.6)

since (f,Bn(x, 3r),B) is Pε′-almost affine. Also f(y) = Ay,s(y), because A is adapted to f at
small scales. Hence

∥A′
y,s∥s = sup

|z−y|=s

|Ay,s(z)− Ay,s(y)| ≤ Pε′∥A′
y,s∥s+ sup

|z−y|=s

|f(z)− f(y)|

≤ Pε′∥A′
y,s∥s+ (1 + ε′) inf

|z−y|=s
|f(z)− f(y)|

≤ Pε′(2 + ε′)∥A′
y,s∥s+ (1 + ε′)λ1(A

′
y,s)s.

Thus, stipulating (1 + ε′)/(1− Pε′(2 + ε′)) ≤ 1 + ε,

λn(A
′
y,s) = ∥A′

y,s∥ ≤ (1 + ε)λ1(A
′
y,s) (9.7)

for all y ∈ E and 0 < s ≤ diamE. Recall that if y ∈ E and s > diamE, thenAy,s = Ay∗,diamE .
Therefore, (9.7) holds for all y ∈ E and s > 0.

Examining the constraints put in place at various stages above, the lemma holds provided that
ε′ > 0 is sufficiently small such that Pε′ ≤ min{1, ε} and (1+ε′)/(1−Pε′(2+ε′)) ≤ 1+ε. �

At last, we are ready to prove Theorem 4.9 / Theorem 9.1.

Proof of Theorem 4.9 / Theorem 9.1. It suffices to prove the theorem when ε > 0 is small. Thus,
let ε ∈ (0,

√
2− 1) small enough such that(

1 +
3

4
ε

)(
1

2
+ 2ε

)
≤ 1 (9.8)

be given. Choose ε∗ ∈ (0, ε) to be specified below. Fix x ∈ Rn, r > 0, and a closed set
E ⊂ Bn(x, r) satisfying (9.1) for some γE > 0. Suppose a map f : RN → RN is ε∗-almost
affine overBn(x, 9r), f |BN (x,3r) is a topological embedding and H̃f (B

N(x, 3r)) ≤ ε∗, and there
exists CE > 0 such that (9.2) holds. Let C1 = C1(n) and ε1 = ε1(n,H, ρ) be the constants from
Theorem 8.2 corresponding to

H = 1 + 1
2
ε and ρ = min

{
2,

1 + ε

1 + 1
2
ε

}
.

Let ε′ = ε′(min{ε/2, ε/C1}, n) be the constant from Lemma 9.2. Assume ε ≤ C1ε1 and ε∗ ≤ ε′.
By Lemma 9.2, we can find a family A of affine maps over E such that A is adapted to f

at small scales, A is stable at large scales, λn(A′
y,s) ≤ Hλ1(A

′
y,s) for all y ∈ E and s > 0,

and (f, E,A) is ε/C1-almost affine. Moreover, we can choose A such that for all y ∈ E and
0 < s ≤ diamE,

|f(z)− Ay,s(z)| ≤
ε

2
∥A′

y,s∥s for all z ∈ Bn(y, s). (9.9)

Note that the map f |E is nonconstant, since f |BN (x,3r) is an embedding and diamE > 0. Thus
f |E satisfies the hypotheses of Theorem 8.2. Using the proof of Theorem 8.2, extend f |E to
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a map F : Rn → RN and extend A = {Ay,s : y ∈ E, s > 0} to a family of affine maps
A+ = {Ay,s : y ∈ Rn, s > 0} over Rn such that

(F,Rn,A+) is ε-almost affine, (9.10)

F is weakly (1 + ε)-quasisymmetric, (9.11)
and

λn(A
′
y,s) ≤

(
1 + 3

4
ε
)
λ1(A

′
y,s) for all y ∈ Rn, s > 0. (9.12)

Then F is quasisymmetric by (9.11) and Corollary 2.3. In fact, since HF (Rn) ≤ 1 + ε ≤ 2 and
Hf (B

n(x, 3r)) ≤ 1+ε∗ ≤ 2, Corollary 2.3 implies that the maps F and f |Bn(x,3r) are uniformly
quasisymmetric with some control function determined by n and N . Hence

diam f(E)

diam f(Bn(x, r))
∼n,N,γE

diamF (E)

diamF (Bn(x, r))

by (9.1) and Lemma 2.1. Because f(E) = F (E), we conclude that

diam f(Bn(x, r)) ∼n,N,γE diamF (Bn(x, r)).

To complete the proof, we must convert the Dini conditions (9.2) on H̃f (B
n(y, ·))2 at all y ∈ E

into Dini conditions (9.3) on βF (Rn)(F (y), ·)2 at all y ∈ Rn.
Before moving on to the main argument, we stop and record a few estimates for F and f .

First, by (9.8), (9.10), (9.12), and Lemma 6.4, we have that for all y ∈ Rn and s > 0,
1

2
∥A′

y,s∥s ≤ |F (z)− F (y)| ≤ 2∥A′
y,s∥s for all z ∈ ∂Bn(y, s). (9.13)

Since HF (Rn) ≤ 1 + ε ≤ 2, it follows that for all y ∈ Rn and s > 0,

inf
|w−y|≥s

|F (w)− F (y)| ≥ 1

2
sup

|z−y|=s

|F (z)− F (y)| ≥ 1

4
∥A′

y,s∥s.

Thus, for all y ∈ Rn and s > 0,

F (Rn) ∩BN

(
F (x),

1

4
∥A′

y,s∥s
)

⊂ F (Bn(y, s)). (9.14)

We can obtain similar estimates for f in place of F by using (9.9) and repeating the proof of
Lemma 6.4. Indeed, by (9.8), (9.9), and by the fact that A is adapted to f at small scales, we see
that for all y ∈ E and 0 < s ≤ diamE,

|f(z)− f(y)| ≤ |f(z)− Ay,s(z)|+ |Ay,s(z)− Ay,s(y)|

≤
(
1 +

ε

2

)
∥A′

y,s∥s ≤ 2∥A′
y,s∥s for all z ∈ ∂Bn(y, s).

(9.15)

Also, for all y ∈ E and 0 < s ≤ diamE,
|f(z)− f(y)| ≥ |Ay,s(z)− Ay,s(y)| − |f(z)− Ay,s(z)|

≥
(
H−1 − ε

2

)
∥A′

y,s∥ ≥ 1

2
∥A′

y,s∥ for all z ∈ ∂Bn(y, s).
(9.16)

Similar considerations give that for all y ∈ E and 0 < s ≤ diamE,

∥A′
y,s∥s ≤ diam f(Bn(y, s)) ≤ 3∥A′

y,s∥s. (9.17)
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Now, because A is stable at large scales, there exists y∗ ∈ E such thatA∗ := Ay∗,diamE = Ay,s

for all y ∈ E and s > diamE. Assign s∗ := ∥A′
∗∥ diamE. We note that for all y ∈ E,

τ(y,
1

2
diamE, y∗, diamE) ≤ 4.

Hence, ∥A′
∗∥ ∼ ∥A′

y, 1
2
diamE

∥ for all y ∈ E by Lemma 6.1 (6.6). Therefore, in view of (9.17),

s∗ ∼ diam f

(
Bn

(
y,

1

2
diamE

))
for all y ∈ E. (9.18)

The argument now breaks up into three major steps.

Step 1. For all y ∈ Rn and for all τ > 0,
∫∞
τs∗

βF (Rn)(F (y), s)
2s−1ds . (ε/τ)2.

The underlying reason is simple: SinceA is stable at large scales, F (Rn) can be approximated
by a fixed n-dimensional plane at all locations and large scales. We now supply some details.
Recall that d(y) = dist(y, E) for all y ∈ Rn. On one hand, if y ∈ Rn and d(y) > (9/2) diamE,
then diamQ ≥ (2/9)d(y) > diamE for all cubes Q ∈ W such that y ∈ 2Q by Definition
8.3.1(c). Hence, for all y ∈ Rn such that d(y) > (9/2) diamE,

F (y) =
∑
Q∈W

ϕQ(y)AQ(y) =
∑
Q∈W

ϕQ(y)A∗(y) = A∗(y).

On the other hand, if y ∈ Rn and d(y) ≤ (9/2) diamE, then y ∈ Bn(y∗, (11/2) diamE). Thus,

|F (y)− A∗(y)| ≤ ε∥A′
∗∥
11

2
diamE . εs∗ whenever d(y) ≤ (9/2) diamE,

because (F,Rn,A+) is ε-almost affine. Comparing F (Rn) with the plane A∗(Rn), we obtain

βF (Rn)(F (y), s) .
1

s
(εs∗) for all y ∈ Rn, s > 0.

Therefore, for all τ > 0,∫ ∞

τs∗

βF (Rn)(F (y), s)
2ds

s
. (εs∗)

2

∫ ∞

τs∗

ds

s3
. (ε/τ)2.

This completes Step 1.

Step 2. For all y ∈ E,
∫∞
0
βF (Rn)(F (y), s)

2s−1ds .n,N CE + ε2.

To establish this step, we use the assumption that A is adapted to f on small scales. Fix y ∈ E

and 0 < s ≤ diamE, set

βs := βf(Rn)

(
f(y),

1

4
∥A′

y,s∥s
)
,

and choose an n-dimensional plane L in RN such that

dist(p, L) ≤ 1

2
βs∥A′

y,s∥s for all p ∈ f(Rn) ∩BN

(
f(y),

1

4
∥A′

y,s∥s
)
.

(The reason that we work with the scale 1
4
∥A′

y,s∥s will become apparent below.) Fix µ ∈ (0, 1)

to be chosen momentarily. By (9.15) and Lemma 6.1 (6.4),

|f(z)− f(y)| ≤ 2∥A′
y,µs∥µs ≤ 2(1 + Tε(1/µ)ε)∥A′

y,s∥µs for all z ∈ ∂Bn(y, µs).
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Since ε <
√
2− 1,

2(1 + Tε(1/ν)ε)ν . ν1−2 log2(1+ε) log(1/ν) → 0 as ν → 0.

Hence we may choose µ to be sufficiently small so that f(Bn(y, µs)) ⊂ BN(f(y), 1
4
∥A′

y,s∥s),
which guarantees

dist(f(z), L) ≤ 1

2
βs∥A′

y,s∥s for all z ∈ Bn(y, µs). (9.19)

Fix λ ∈ (0, 1) to be specified later (look after (9.23)), depending only on n. We shall use the
n-dimensional plane L to estimate βF (Rn)(F (y),

1
4
∥A′

y,λµs∥λµs).
Let q ∈ F (Rn) ∩ BN(F (y), 1

4
∥A′

y,λµs∥λµs). By (9.14) applied at scale λµs, we can write
q = F (z) for some z ∈ Bn(y, λµs). If z ∈ E ∩B(y, λµs), then F (z) = f(z), and by (9.19),

dist(F (z), L) ≤ 1

2
βs∥A′

y,s∥s. (9.20)

On the other hand, suppose that z ∈ Bn(y, λµs) \ E. Then

F (z) =
∑
Q

ϕQ(z)AQ(z) =
∑
Q

ϕQ(z)AzQ,diamQ(z), (9.21)

where the sum is over all cubes Q ∈ W such that z ∈ 2Q. For any such cube Q, we have

|z − zQ| ≤ |z − wQ|+ |wQ − zQ| ≤ diam2Q+ 4diamQ = 6diamQ ≤ 12
√
nλµs, (9.22)

where the last inequality holds by Definition 7.3.1(c) and the bound d(z) ≤ |z − y| ≤ λµs.
Hence

|zQ − y| ≤ |zQ − z|+ |z − y| ≤ 12
√
nλµs+ λµs ≤ 13

√
nλµs. (9.23)

Setting λ := 1/26
√
n ensures that zQ ∈ E ∩ Bn(y, 1

2
µs) and diamQ ≤ 2

√
nλµs < 1

2
λµs.

Since A is adapted to f at small scales and diamQ < 1
2
λµs < diamE, we have

AQ(zQ + (diamQ)ei) = f(zQ + (diamQ)ei) for all i = 0, . . . n,

where e0 = 0 and e1, . . . , en is a standard basis for Rn. Thus, by (9.19),

dist(AQ(zQ + (diamQ)ei), L) ≤
1

2
βs∥A′

y,s∥s for all i = 0, . . . n. (9.24)

We now introduce an auxiliary affine mapBQ : Rn → RN , with an aim of invoking Lemma 6.9,
as follows. For each i = 0, . . . , n, choose ui ∈ L such that

|AQ(zQ + (diamQ)ei)− ui| = dist(AQ(zQ + (diamQ)ei), L). (9.25)

Then let BQ : Rn → RN be the unique affine map such that BQ(zQ + (diamQ)ei) = ui for all
i = 0, . . . , n. Note thatBQ(Rn) ⊂ L. Set V = {v0, . . . , vn}, where each vi := zQ+(diamQ)ei.
Then diamV =

√
2 diamQ and Ψ(V ) = 2n/2n! (see 6.26). Thus, combining (9.24) and (9.25),

we observe that

|AQ(v)−BQ(v)| ≤

(
1
2
βs∥A′

y,s∥s
diamV

)
diamV for all v ∈ V.
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Therefore, by Lemma 6.9,

|AQ(z)−BQ(z)| ≤

(
1
2
βs∥A′

y,s∥s
diamV

)(
diamV + 23/2(2n)(n+1)/2 dist(z, V )

)
.

Since dist(z, V ) ≤ |z − zQ| ≤ 6 diamQ = (6/
√
2) diamV by (9.22), it follows that

dist(AQ(z), L) ≤ |AQ(z)−BQ(z)| .n βs∥A′
y,s∥s (9.26)

for all Q ∈ W such that z ∈ 2Q. Together (9.21) and (9.26) yield

dist(F (z), L) .n βs∥A′
y,s∥s for all z ∈ Bn(y, λµs) \ E. (9.27)

Combining (9.20) and (9.27), we conclude that

dist(q, L) .n βs∥A′
y,s∥s for all q ∈ F (Rn) ∩BN

(
F (y),

1

4
∥A′

y,λµs∥λµs
)
.

Using the fact that ∥A′
y,λµs∥ ∼n ∥A′

y,s∥ (by Lemma 6.1 (6.6)), it follows that

βF (Rn)

(
F (y),

1

4
∥A′

y,λµs∥λµs
)

.n

βs∥A′
y,s∥s

1
4
∥A′

y,λµs∥λµs
.n βf(Rn)

(
f(y),

1

4
∥A′

y,s∥s
)

(9.28)

for all y ∈ E and 0 < s ≤ diamE where λµ ∈ (0, 1) depends only on n.
We now adjust the scales in (9.28) so that they are compatible with Lemma 4.2. First, by

(9.15) and (9.16),
1

8
|f(y + se1)− f(y)| ≤ 1

4
∥A′

y,s∥s ≤
1

2
|f(y + se1)− f(y)|.

Hence, by (3.1),

βf(Rn)

(
f(y),

1

4
∥A′

y,s∥s
)

. βf(Rn)

(
f(y),

1

2
|f(y + se1)− f(y)|

)
. (9.29)

Second, note that ∥A′
y,λµs∥λµs ∼n ∥A′

y,s∥s. By (9.15) and (9.16), it follows that

1

4
∥A′

y,λµs∥λµs ∼n ∥A′
y,s∥s ∼ |f(y + se1)− f(y)|.

Hence, there exists a constant ω > 0 depending only on n such that

βF (Rn)(F (y), ω|f(y + se1)− f(y)|) .n βF (Rn)

(
F (y),

1

4
∥A′

y,λµs∥λµs
)

(9.30)

by (3.1). Combining (9.28), (9.29), and (9.30), we obtain

βF (Rn) (F (y), ω|f(y + se1)− f(y)|) .n βf(Rn)

(
f(y),

1

2
|f(y + se1)− f(y)|

)
.

Therefore, by Lemma 4.2,

βF (Rn) (F (y), ω|f(y + se1)− f(y)|) .n,N Hf (B
N(y, 2s)) (9.31)

for all y ∈ E and 0 < s ≤ diamE.
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Observe that f is a quasiconformal map on the open ball BN
◦ (x, 3r) with maximal dilatation

Kf (B
N
◦ (x, 3r)) ≤ Hf (B

N(x, 3r))N−1 ≤ εN−1
∗ .N 1. By replicating the proof of Corollary 4.3

with (9.31) instead of (4.2), one can show that there exists a constant C = C(n,N) > 1 so that∫ diam f(BN (y, 1
2
diamE))/C

0

βF (Rn)(F (y), s)
2ds

s
≤ C

∫ 1
2
diamE

0

H̃f (B
N(y, s))2

ds

s
. (9.32)

Note that diam f(Bn(y, 1
2
diamE)) ≤ diam f(BN(y, 1

2
diamE)) and 1

2
diamE ≤ r. Hence∫ diam f(Bn(y, 1

2
diamE))/C

0

βF (Rn)(F (y), s)
2ds

s
≤ C

∫ r

0

H̃f (B
N(y, s))2

ds

s
≤ CCE. (9.33)

by (9.2). Therefore, in view of (9.18), there is τ ∼ 1/C > 0 depending only on n and N so that∫ τs∗

0

βF (Rn)(F (y), s)
2ds

s
.n,N CE.

Incorporating the estimate from Step 1, we conclude that for all y ∈ E,∫ ∞

0

βF (Rn)(F (y), s)
2ds

s
≤
∫ τs∗

0

βF (Rn)(F (y), s)
2ds

s
+

∫ ∞

τs∗

βF (Rn)(F (y), s)
2ds

s

.n,N CE +
( ε
τ

)2
.n,N CE + ε2,

as desired. This completes Step 2.

Step 3. For all y ∈ Rn \ E,
∫∞
0
βF (Rn)(F (y), s)

2s−1ds .n,N CE + ε2.

We exploit the fact that F is smooth far away fromE. Let y ∈ Rn\E and let 0 < s < d(y)/2.
Then A′

y,s = DF (y) = A′
y,t for all t < d(y)/2. Let a(y) := ∥DF (y)∥. By Lemma 8.8,

sup
z∈B(y,s)

|F (z)− Ay,s(z)| .n ε
s

d(y)
∥A′

y,s∥s = ε
s

d(y)
a(y)s.

Hence, since F (Rn) ∩BN(F (y), 1
4
a(y)s) ⊂ F (Bn(y, s)) by (9.14), we obtain

βF (Rn)

(
F (y),

1

4
a(y)s

)
.n

ε

d(y)
s for all s < d(y)/2.

Thus, ∫ 1
8
a(y)d(y)

0

βF (Rn)(F (y), s)
2ds

s
=

∫ 1
2
d(y)

0

βF (Rn)

(
F (y),

1

4
a(y)s

)2
ds

s

.n

(
ε

d(y)

)2 ∫ 1
2
d(y)

0

s ds . ε2.

(9.34)

On the other hand, writing δ = |F (y)−F (y′)| where y′ ∈ E is a point satisfying |y−y′| = d(y),
we have BN(F (y), t) ⊂ BN(F (y′), t+ δ) for all t > 0. Fix σ > 0 to be chosen later. Then

BN(F (y), t) ⊂ BN(F (y′), t+ δ) ⊂ BN

(
F (y′),

(
1 +

1

σ

)
t

)
for all t ≥ σδ.
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Hence, by (3.2),

βF (Rn)(F (y), t) ≤
(
1 +

1

σ

)
βF (Rn)

(
F (y′),

(
1 +

1

σ

)
t

)
for all t ≥ σδ.

Therefore,∫ ∞

σδ

βF (Rn)(F (y), t)
2dt

t
≤
(
1 +

1

σ

)2 ∫ ∞

σδ

βF (Rn)

(
F (y′),

(
1 +

1

σ

)
t

)2
dt

t

.n,N

(
1 +

1

σ

)2 (
CE + ε2

)
,

(9.35)

where the last inequality holds by Step 2. Next, note that δ ∼ ∥A′
y,d(y)∥d(y) ∼

1
8
a(y)d(y) where

the first comparison holds by (9.13) and the second comparison holds by Lemma 6.1 (6.6) since
A is ε-compatible for some ε < 1. Choose σ > 0 sufficiently small so that σδ ≤ 1

8
d(y)a(y).

Then, combining (9.34) and (9.35), we obtain∫ ∞

0

βF (Rn)(F (y), s)
2ds

s
≤
∫ 1

8
a(y)d(y)

0

βF (Rn)(F (y), s)
2ds

s
+

∫ ∞

σδ

βF (Rn)(F (y), s)
2ds

s

.n,N ε2 +

(
1 +

1

σ

)2 (
CE + ε2

)
.n,N CE + ε2

for all y ∈ Rn \ E. This completes Step 3 and the proof of Theorem 4.9 / Theorem 9.1. �
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